Физические и химические свойства альдегидов. Альдегиды. Общая характеристика. Методы получения

Вопрос 1. Альдегиды. Их строение, свойства, получение и применение.

Ответ. Альдегиды – органические вещества, молекулы которых

Общая формула альдегидов ˸

Номенклатура

Наименование альдегидов производят от исторических названий карбоновых кислот с тем же числом атомов углерода. Так, CH 3 CHO – уксусный альдегид. По систематической номенклатуре название альдегидов производят от названий углеводородов с прибавлением окончания –аль , CH 3 CHO – этаналь. Нумерацию углеродной цепи начинают с карбонильной группы. Для разветвленных изомеров перед названием альдегида записывают названия заместителей с указанием цифрой и номера углеродного атома, с которым они связаны˸

CH 3 – CH (CH 3) – CH 2 – CHO.

3-метилбутаналь

Изомерия

Углеродного скелета ˸

CH 3 – CH 2 – CH 2 – CHO – бутаналь,

CH 3 – CH(CH 3) – CHO – 2-метилпропаналь.

Классов соединений ˸

CH 3 – CH 2 – CHO – пропаналь,

CH 3 – CO – CH 3 – пропанон (ацетон).

Физические свойства

Метаналь – газ, альдегид от C 2 до С 13 – жидкости, высшее альдегиды – твердые вещества (тетрадеканаль или миристиновый альдегид CH 3 (CH 2) 12 CHO имеет температуру плавления 23,5 ). Низшие альдегиды хорошо растворимы в воде; чем больше атомов углерода в молекуле, тем меньше растворимость; у альдегидов нет водородной связей.

Химические свойства

1. Реакции присоединения ˸

а) гидрирование ˸

CH 2 O + H 2 = CH 3 OH;

б) образование ацеталий со спиртами ˸

CH 3 - CH 2 – CHO + 2C 2 H 5 OH = CH 3 – CH 2 – CH(OC 2 H 5) 2 + H 2 O.

2. Реакция окисления˸

а) реакция ʼʼсеребряного зеркалаʼʼ ˸

CH 3 CHO + Ag 2 O 2 Ag + CH 3 COOH;

б) взаимодействие с гидрооксидом меди (II) ˸

CH 3 CHO + 2Cu(OH) 2 CH 3 COOH + Cu 2 O↓ + 2H 2 O

3. Реакции замещения˸

CH 3 CH 2 CHO + Br 2 = CH 3 – CH (Br) – CHO+ HBr

4.Полимеризация˸

CH3=O (CH 2 O) 3 .

триоксиметилен

5.Поликонденсация˸

n C 6 H 5 OH + n CH 2 O + n C 6 H 5 OH + …=

=[ C 6 H 4 (OH) – CH 2 – C 6 H 4 (OH)] n + n H 2 O

Фенолформальдегидная смола

Получение

а) Окисление алканов˸

CH 4 + O 2 CH 2 O + H 2 O.

метаналь

б) Окисление спиртов˸

2CH 3 OH + O 2 2CH 2 O + 2H 2 O.

в) Реакция Кучерова˸

C 2 H 2 + H 2 O CH 3 CHO.

г) Окисление алкенов˸

C 2 H 4 + [O] CH 3 CHO.

Применение˸

1. Получение фенолформальдегидных смол, пластмасс.

2. Производство лекарств, формалина (из CH 2 =O).

3. Производство красителей.

4. Производство уксусной кислоты.

5. Дезинфекция и протравливание семян.

Вопрос 2. Проблема защита окружающей среды .

Ответ ˸ На сегодняшний день самым крупномасштабным является загрязнение окружающей среды химическими веществами.

Охрана атмосферы

Источники загрязнения˸ предприятия чёрной и цветной металлургии, теплоэлектростанции, автотранспорт.

Промышленность˸ выбросы оксидов серы и азота. В результате обжига сульфидных руд цветных металлов выделяется оксид серы (IV).

Теплоэлектростанции выделяют SO 2 и SO 3 ,которые соединяются с влагой воздуха (SO 3 + H 2 O = H 2 SO 4)и выпадают с виде кислотных дождей.

Вопрос 1. Альдегиды. Их строение, свойства, получение и применение. - понятие и виды. Классификация и особенности категории "Вопрос 1. Альдегиды. Их строение, свойства, получение и применение." 2015, 2017-2018.

Класс органических соединений с общей формулой

где R - углеводородный радикал (остаток); в организме являются промежуточными продуктами обмена веществ.

Отдельные представители альдегидов обычно получают название от кислоты, образующейся при их окислении (например, уксусная кислота - уксусный альдегид). В зависимости от типа радикала различают насыщенные, ненасыщенные, ароматические, циклические альдегиды и другие. Если радикалом является остаток спирта, карбоновой кислоты и прочее, образуются альдегидоспирты, альдегидокислоты и другие соединения со смешанными функциями, обладающие химическими свойствами, присущими альдегидам и соответствующим R-группам. При замещении водорода альдегидной группы на углеводородный радикал получаются кетоны (см.), дающие многие сходные с альдегидами реакции. Один из простейших альдегидов - уксусный, или ацетальдегид СН 3 - СНО, иногда получают дегидрогенизацией этилового спирта над нагретой медью.

Распространен способ получения альдегида из углеводородов ацетиленового ряда путем присоединения к ним воды в присутствии катализатора, открытый М. Г. Кучеровым:

Эта реакция применяется при синтетическом производстве уксусной кислоты. Ароматические альдегиды обычно получают окислением ароматических, углеводородов, имеющих боковую метильную группу:

или действием на соответствующие углеводороды окиси углерода в присутствии НСl и катализатора.

Особенности и химические свойства альдегидов Связаны в основном со свойствами и превращениями альдегидной группы. Так, простейший из альдегидов - муравьиный, или формальдегид

альдегидная группировка которого связана с водородом, является газом; низшие альдегиды (например, ацетальдегид) - жидкости с резким запахом; высшие альдегиды - нерастворимые в воде твердые вещества.

Благодаря присутствию карбонильной группы и подвижного атома водорода альдегиды относятся к числу наиболее реакционноспособных органических соединений. Большинство из разносторонних реакций альдегидов характеризуется участием в них карбонильной группы. К ним относятся реакции окисления, присоединения и замещения кислорода на другие атомы и радикалы.

Альдегиды легко полимеризуются и конденсируются (см. Альдольная конденсация); при обработке альдегидов щелочами или кислотами получаются альдоли, например:

При отщеплении воды альдоль превращается в кротоновый альдегид

способный к дальнейшему присоединению молекул (путем полимеризации). Полученные в результате конденсации полимеры носят общее название альдольных смол.

При исследовании биологических субстратов (крови, мочи и так далее) положительный эффект реакций, основанных на окислении альдегидной группы, дает сумма редуцирующих веществ. Поэтому эти реакции, хотя и применяются для количественного определения сахара (глюкозы) по Хагедорну-Йенсену, а также пробы Ниландера, Гайнеса, Бенедикта и прочие, но не могут считаться специфическими.

Альдегиды играют большую роль в биологических процессах, в частности биогенные амины в присутствии ферментов аминоксидаз превращаются в альдегиды с последующим их окислением в жирные кислоты.

Радикалы альдегиды высших жирных кислот входят в состав молекул плазмалогенов (см.). Растительные организмы в процессах фотосинтеза для ассимиляции углерода используют муравьиный альдегид. Вырабатываемые растениями эфирные масла состоят в основном из циклических ненасыщенных альдегидов. (анисовый, коричный, ванилин и другие).

При спиртовом брожении под действием фермента карбоксилазы дрожжей происходит декарбоксилирование пировиноградной кислоты с образованием уксусного альдегида, превращающегося путем восстановления в этиловый спирт.

Альдегиды широко используются в синтезе многих органических соединений. В медицинской практике применяются как непосредственно альдегиды (см. Формалин , Паральдегид , Цитраль), так и синтетические производные, получаемые из альдегидов, например, уротропин (см. Гексаметилентетрамин), хлоралгидрат (см.) и другие.

Альдегиды как профессиональные вредности

Аьдегиды широко применяются в промышленном производстве синтетических смол и пластмасс, ванилинокрасочной и текстильной промышленности, в пищевой промышленности и парфюмерии. Формальдегид применяется главным образом в производстве пластмасс и искусственных смол, в кожевенно-меховой промышленности и так далее; акролеин - при всех производственных процессах, где жиры подвергаются нагреванию до t° 170° (литейные цеха - сушка стержней с масляным крепителем, электротехническая промышленность, маслобойные заводы и салотопенное производство и так далее). Более подробно - смотри статьи, посвященные отдельным альдегидам.

Все альдегиды, особенно низшие, обладают выраженным токсическим действием.

Альдегиды раздражают слизистые оболочки глаз и верхних дыхательных путей. По характеру общетоксического действия альдегиды являются наркотиками, однако наркотический эффект их значительно уступает раздражающему. Степень выраженности интоксикации определяется наряду с величиной действующей концентрации также характером радикала и как следствие - изменением физико-химических свойств альдегидов: низшие альдегиды (хорошо растворимые и высоколетучие вещества) обладают резким раздражающим действием на верхние отделы органов дыхания и сравнительно менее выраженным наркотическим действием; при увеличении длины углеводородной цепочки радикала растворимость и летучесть альдегидов падают, в результате чего снижается раздражающее, не нарастает наркотическое действие; раздражающее действие непредельных альдегидов сильнее, чем у предельных.

Механизм токсического действия альдегидов связан с высокой реакционной способностью карбонильной группы альдегидов, которая, вступая в реакции взаимодействия с тканевыми белками, обусловливает первичный раздражающий эффект, рефлекторные реакции центральной нервной системы, дистрофические изменения внутренних органов и так далее. Кроме того, попадая в организм, альдегиды подвергаются различным биохимическим превращениям; в этом случае токсическое действие на организм оказывают уже не сами альдегиды, а продукты их превращений. Альдегиды медленно выводятся из организма, способны кумулировать, чем объясняется развитие хронических отравлений, основные проявления которых наблюдаются в первую очередь в виде патологических изменений органов дыхания.

Первая помощь при отравлении альдегидами. Вывести пострадавшего на свежий воздух. Промыть глаза 2% щелочным раствором. Щелочные и масляные ингаляции. При явлениях асфиксии - вдыхание кислорода. По показаниям средства, стимулирующие сердечную деятельность и дыхание, успокаивающие средства (бромиды, валериана). При болезненном кашле - горчичники, банки, препараты кодеина. При отравлении через рот - промывания желудка, внутрь 3% раствор бикарбоната натрия, сырые яйца, белковая вода, молоко, солевые слабительные. При попадании на кожу - обмывание водой или 5% нашатырным спиртом.

См. также статьи, посвященные отдельным альдегидам.

Профилактика

Герметизация и автоматизация производственных процессов. Вентиляция помещений (см. Вентиляция). Использование индивидуальных средств защиты, например фильтрующего противогаза марки «А» (см. Противогазы), спецодежды (см. Одежда) и так далее.

Предельно допустимые концентрации в атмосфере производственных помещений: для акролеина - 0,7 мг/м 3 , для ацетальдегида, масляного и проппонового альдегидов - 5 мг/м 3 , для формальдегида и кротонового А. - 0,5 мг/м 3 .

Определение альдегидов. Все альдегиды суммарно определяются бисульфитным методом по связыванию кислым сернокислым натрием или колориметрически - с фуксиносернистой кислотой. Разработан полярографический метод (Петрова-Яковцевская), спектрофотометрический (Векслер).

Библиография

Бауер К. Г. Анализ органических соединений, пер. с нем., М., 1953; Несмеянов А. Н. и Несмеянов Н. А. Начала органической химии, кн. 1-2, М., 1969-1970.

Профессиональные вредности - Амирханова Г. Ф. и Латыпова З. В. Экспериментальное обоснование предельно допустимой концентрации ацетальдегида в воде водоемов, в кн.: Пром. загрязн. водоемов, под ред. С. Н. Черкинского, в. 9, с. 137, М., 1969, библиогр.; Быховская М. С., Гинзбург С. Л. и Xализова О. Д. Методы определения вредных веществ в воздухе, с. 481, М., 1966; Ван Вэнь-янь, Материалы к токсикологии альдегидов жирного ряда, в кн.: Материалы по токсикол. веществ, применяемых в производ. пластич. масс и синтетич. каучуков, под ред. Н. В. Лазарева и И. Д. Гадаскиной, с. 42, Л., 1957, библиогр.; Вредные вещества в промышленности, под ред. Н. В. Лазарева, т. 1, с. 375, Л., 1971, библиогр.; Гурвиц С. С. и Сергеева Т. И. Определение малых количеств альдегидов в воздухе производственных помещений методом производной полярографии, Гиг. труда и проф. заболев., №9, с. 44, 1960; Трофимов Л. В. Сравнительное токсическое действие кротонового и масляного альдегидов, там же, №9, с. 34, 1962, библиогр.; Цай Л. М. К вопросу о превращениях ацетальдегида в организме, там же, № 12, с. 33, 1962, библиогр.; Нinе С. Н. а. о. Studies on the toxicity of glycid aldehyde, Arch, environm. Hlth, v. 2, p. 23, 1961, bibliogr.; Jung F. u. Onnen K. Bindung und Wirkungen des Formaldehyds an Erythrocyten, Naunyn-Schmiedeberg"s Arch. exp. Path. Pharmak., Bd 224, S. 179, 1955; Nova H. a. Touraine R. G. Asthme au formol, Arch. Mai. prof., t. 18, p. 293, 1957; Skоg E. A lexicological investigation of lower aliphatic aldehydes, Actapharmacol. (Kbh.), v. 6, p. 299, 1950, bibliogr.

Б. В. Кулибакин; Н. К. Кулагина (проф.).

(для простейшего альдегида R=H)

Классификация альдегидов

По строению углеводородного радикала:

Предельные; например:



Непредельные; например:

Ароматические; например:



Алициклические; например:


Общая формула предельных альдегидов

Гомологический ряд, изомерия, номенклатура

Альдегиды изомерны другому классу соединений - кетонам


например:




Альдегиды и кетоны содержат карбонильную группу ˃C=O, поэтому называются карбонильными соединениями.

Электронное строение молекул альдегидов

Атом углерода альдегидной группы находится в состоянии sp 2 -гибридизации, поэтому все σ-связи в этой группе располагаются в одной плоскости. Облака р-электронов, образующих π-связь, перпендикулярны этой плоскости и легко смещаются к более электроотрицательному атому кислорода. Поэтому двойная связь C=O (в отличие от двойной связи C=C в алкенах) сильно поляризована.

Физические свойства


Химические свойства

Альдегиды - реакционноспособные соединения, вступающие в многочисленные реакции. Наиболее характерны для альдегидов:


а) реакции присоединения по карбонильной группе; реагенты типа НХ присоединяются следующим образом:



б) реакции окисления связи C-H альдегидной группы, в результате которых образуются карбоновые кислоты:

I. Реакции присоединения

1. Гидрирование (образуются первичные спирты



2. Присоединение спиртов (образуются полуацетали и ацетали)



В избытке спирта в присутствии HCl полуацетали превращаются в ацетали:



II. Реакции окисления

1. Реакция «серебряного зеркала»



Упрощённо:



Эта реакция является качественной реакцией на альдегидную группу (на стенках реакционного сосуда образуется зеркальный налет металлического серебра).


2. Реакция с гидроксидом меди (II)



Эта реакция также является качественной реакцией на альдегидную групп у (выпадает красный осадок Сu 2 O).


Формальдегид окисляется различными O-содержащими окислителями сначала до муравьиной кислоты и далее - до Н 2 СO 3 (СO 2 + Н 2 O):



III. Реакции ди-, три- и полимеризации

1. Альдольная конденсация



2. Тримеризация ацетальдегида



3. Полимеризация формальдегида

При длительном хранении формалина (40%-ный водный раствор формальдегида) в нем происходит полимеризация с образованием белого осадка параформа:



IV. Реакция поликонденсации формальдегида с фенолом

Название альдегид применяется к соединениям, содержащим карбонильную группу, связанную с атомом водорода (-COH)

Альдегиды чаще всего имеют тривиальные названия, обычно такие же, как кислоты, в которые они переходят при окислении.

Название неразветвленного ациклического альдегида образовывают путем добавления окончания "–АЛ " ("–АЛЬ " в русской терминологии) к названию углеводорода, содержащего тоже число атомов углерода, например:

Наличие кратных связей или боковых цепей в молекуле альдегида обозначается аналогично алканам:

3-метилпентаналь

По рациональной номенклатуре альдегиды жирного ряда иногда рассматривают как производные уксусного альдегида, например: триметилуксусный альдегид, метилэтилуксусный альдегид и т.д.

Для альдегидов широко применяются не систематические – тривиальные названия. Они образуются из соответствующих тривиальных названий карбоновых кислот. Эти названия приведены в таблице 7.

Таблица 7

Названия альдегидов

НАЗВАНИЕ

Название в русской терминологии

формальдегид

муравьиный альдегид

ацетальдегид

уксусный альдегид

С 2 Н 5 СОН

пропиональдегид

пропионовый альдегид

С 3 Н 7 СОН

бутилальдегид

масляный альдегид

С 4 Н 9 СОН

валеральдегид

валериановый альдегид

CH 2 =CH 2 –COH

акрилальдегид

акриловый альдегид

HOC–CH 2 –COH

малональдегид

малоновый альдегид

Исключение: этандиальдегид обычно называют глиоксалем.

Название кетон применяется к соединениям, содержащим карбонильную группу, связанную с двумя углеводородными радикалами.

Названия кетонов образуются путем добавления окончания "–ОН " или "–ДИОН " и т.д. к названию углеводорода соответствующего главной цепи.

2-бутанон 2,4-гескандион

По радикально-функциональной номенклатуре названия кетонов производят от названий углеводородных радикалов, связанных с карбонильной группой, добавляя окончание "–КЕТОН "

Таблица 8

Названия кетона

диэтилкетон диметилкетон

3-пентанон пропанон

У некоторых кетонов, также как и у альдегидов, сохраняются тривиальные названия

ацетон диацетил

4.3. "Карбоновые кислоты"

К
арбоновыми кислотами являются соединения, содержащие в своем строении карбоксильную группу (-COOH)

Названия одноосновных карбоновых кислот строится по трем видам номенклатур.

Тривиальные названия не выражают строения соединения и обычно отражают историю, происхождение веществ, выделение их из природных продуктов, путь синтеза т.д.

По рациональной номенклатуре карбоновые кислоты рассматриваются как замещенные уксусной кислоты (метилэтилуксусная, триметилуксусная и т.д.).

Номенклатура ИЮПАК. Имеются два варианта образования названия.

1-й вариант: углеродный атом карбоксильной группы считается составной частью углеродного скелета, и название кислоты образуется из названия соответствующего углеводорода путем добавления к нему окончания "–ОВАЯ КИСЛОТА ". Этот вариант наиболее предпочтителен для простых алифатических кислот.

гексановая кислота

2-й вариант: карбоксильная группа рассматривается в качестве заместителя в углеводородной цепи. К названию соответсвующего углеводорода добавляется окончание "–КАРБОНОВАЯ КИСЛОТА "

1-пентанкарбоновая кислота

предельных одноосновных карбоновых кислот образуют из названий алканов с таким же числом атомов углерода с добавлением суффикса.