Чему равен импульс системы тел. Импульс и момент импульса в физике: формулы, описывающие закон сохранения этих величин

Изменяются, так как на каждое из тел действуют силы взаимодействия, однако сумма импульсов остается постоянной. Это и называется законом сохранения импульса .

Второй закон Ньютона выражается формулой . Ее можно записать иным способом, если вспомнить, что ускорение равно быстроте изменения скорости тела. Для равноускоренного движения формула будет иметь вид:

Если подставить это выражение в формулу, получим:

,

Эту формулу можно переписать в виде:

В правой части этого равенства записано изменение произведения массы тела на его скорость. Произведение массы тела на скорость является физической величиной, которая называется импульсом тела или количеством движения тела .

Импульсом тела называют произведение массы тела на его скорость. Это векторная величина. Направление вектора импульса совпадает с направлением вектора скорости.

Другими словами, тело массой m , движущееся со скоростью обладает импульсом . За единицу импульса в СИ принят импульс тела массой 1 кг , движущегося со скоростью 1 м/с (кг·м/с). При взаимодействии друг с другом двух тел если первое действует на второе тело силой , то, согласному третьему закону Ньютона , второе действует на первое силой . Обозначим массы этих двух тел через m 1 и m 2 , а их скорости относительно какой-либо системы отсчета через и . Через некоторое время t в результате взаимодействия тел их скорости изменятся и станут равными и . Подставив эти значения в формулу, получим:

,

,

Следовательно,

Изменим знаки обеих частей равенства на противоположные и запишем в виде

В левой части равенства - сумма начальных импульсов двух тел, в правой части - сумма импульсов тех же тел через время t . Суммы равны между собой. Таким образом, несмотря на то. что импульс каждого тела при взаимодействии изменяется, полный импульс (сумма импульсов обоих тел) остается неизменным.

Действителен и тогда, когда взаимодействуют несколько тел. Однако, важно, чтобы эти тела взаимодействовали только друг с другом и на них не действовали силы со стороны других тел, не входящих в систему (либо чтоб внешние силы уравновешивались). Группа тел, не взаимодействущая с другими телами, называется замкнутой системой справедлив только для замкнутых систем.

Импульс... Понятие, довольно часто используемое в физике. Что понимают под этим термином? Если задать этот вопрос простому обывателю, в большинстве случаев мы получим ответ, что импульс тела - это определенное воздействие (толчок или удар), оказываемое на тело, благодаря чему оно получает возможность двигаться в заданном направлении. В целом довольно верное объяснение.

Импульс тела - определение, с которым мы впервые сталкиваемся в школе: на уроке физики нам показывали, как по наклонной поверхности скатывалась небольшая тележка и сталкивала со стола металлический шарик. Именно тогда мы рассуждали, что может оказать влияние на силу и длительность этого Из подобных наблюдений и умозаключений много лет назад и родилось понятие импульса тела как характеристики движения, напрямую зависящей от скорости и массы объекта.

Сам термин в науку ввел француз Рене Декарт. Произошло это в начале XVII века. Ученый объяснял импульс тела не иначе как «количество движения». Как говорил сам Декарт, если одно движущееся тело сталкивается с другим, оно теряет столько своей энергии, сколько отдает другому объекту. Потенциал тела, по мнению физика, никуда не исчезал, а лишь передавался от одного предмета другому.

Основной характеристикой, которой обладает импульс тела, является его направленность. Иначе говоря, он представляет собой Отсюда следует и такое утверждение, что всякое тело, находящееся в движении, обладает определенным импульсом.

Формула воздействия одного объекта на другой: p = mv, где v - скорость тела (векторная величина), m - масса тела.

Однако импульс тела - не единственная величина, определяющая движение. Почему одни тела, в отличие от других, не теряют его продолжительное время?

Ответом на этот вопрос стало появление еще одного понятия - импульса силы, который определяет величину и продолжительность воздействия на предмет. Именно он позволяет нам определять, как изменяется импульс тела за определенный промежуток времени. Импульс силы представляет собой произведение величины воздействия (собственно силы) на продолжительность его приложения (время).

Одним из наиболее примечательных особенностей ИТ является его сохранение в неизменном виде при условии замкнутой системы. Иначе говоря, при отсутствии иных воздействий на два предмета, импульс тела между ними будет оставаться стабильным сколько угодно долго. Принцип сохранения можно учитывать и в ситуации, когда внешнее воздействие на объект присутствует, но его векторное воздействие равно 0. Также импульс не изменится и в том случае, когда воздействие этих сил незначительно или действует на тело весьма непродолжительный период времени (как, например, при выстреле).

Именно этот закон сохранения не одну сотню лет не дает покоя изобретателям, ломающим голову над созданием пресловутого «вечного двигателя», так как именно он лежит в основе такого понятия, как

Что касается применения знаний о таком явлении, как импульс тела, то их используют при разработке ракет, вооружения и новых, пусть и не вечных, механизмов.

3.2. Импульс

3.2.2. Изменение импульса тела

Для применения законов изменения и сохранения импульса необходимо уметь рассчитывать изменение импульса.

Изменение импульса Δ P → тела определяется формулой

Δ P → = P → 2 − P → 1 ,

где P → 1 = m v → 1 - начальный импульс тела; P → 2 = m v → 2 - его конечный импульс; m - масса тела; v → 1 - начальная скорость тела; v → 2 - его конечная скорость.

Для вычисления изменения импульса тела целесообразно применять следующий алгоритм :

1) выбрать систему координат и найти проекции начального P → 1 и конечного P → 2 импульсов тела на координатные оси:

P 1 x , P 2 x ;

P 1 y , P 2 y ;

∆P x = P 2 x − P 1 x ;

∆P y = P 2 y − P 1 y ;

3) вычислить модуль вектора изменения импульса Δ P → как

Δ P = Δ P x 2 + Δ P y 2 .

Пример 4. Тело падает под углом 30° к вертикали на горизонтальную плоскость. Определить модуль изменения импульса тела за время удара, если к моменту соприкосновения с плоскостью модуль импульса тела равен 15 кг · м/с. Удар тела о плоскость считать абсолютно упругим.

Решение. Тело, падающее на горизонтальную поверхность под некоторым углом α к вертикали и соударяющееся с данной поверхностью абсолютно упруго,

  • во-первых, сохраняет неизменным модуль своей скорости, а значит, и величину импульса:

P 1 = P 2 = P ;

  • во-вторых, отражается от поверхности под тем же углом, под каким падает на нее:

α 1 = α 2 = α,

где P 1 = mv 1 - модуль импульса тела до удара; P 2 = mv 2 - модуль импульса тела после удара; m - масса тела; v 1 - величина скорости тела до удара; v 2 - величина скорости тела после удара; α 1 - угол падения; α 2 - угол отражения.

Указанные импульсы тела, углы и система координат показаны на рисунке.

Для расчета модуля изменения импульса тела воспользуемся алгоритмом :

1) запишем проекции импульсов до удара и после удара тела о поверхность на координатные оси:

P 1 x = mv  sin α, P 2 x = mv  sin α;

P 1 y = −mv  cos α, P 2 y = mv  cos α;

2) найдем проекции изменения импульса на координатные оси по фор­мулам

Δ P x = P 2 x − P 1 x = m v sin α − m v sin α = 0 ;

Δ P y = P 2 y − P 1 y = m v cos α − (− m v cos α) = 2 m v cos α ;

Δ P = (Δ P x) 2 + (Δ P y) 2 = (Δ P y) 2 = | Δ P y | = 2 m v cos α .

Величина P = mv задана в условии задачи; следовательно, вычисление модуля изменения импульса произведем по формуле

Δ P = 2 P cos 30 ° = 2 ⋅ 15 ⋅ 0,5 3 ≈ 26 кг ⋅ м/с.

Пример 5. Камень массой 50 г брошен под углом 45° к горизонту со скоростью 20 м/с. Найти модуль изменения импульса камня за время полета. Сопротивлением воздуха пренебречь.

Решение. Если сопротивление воздуха отсутствует, то тело движется по симметричной параболе; при этом

  • во-первых, вектор скорости в точке падения тела составляет с горизонтом угол β, равный углу α (α - угол между вектором скорости тела в точке бросания и горизонтом):
  • во-вторых, модули скоростей в точке бросания v 0 и в точке падения тела v также одинаковы:

v 0 = v ,

где v 0 - величина скорости тела в точке бросания; v - величина скорости тела в точке падения; α - угол, который составляет вектор скорости с горизонтом в точке бросания тела; β - угол, который составляет с горизонтом вектор скорости в точке падения тела.

Векторы скорости тела (векторы импульса) и углы показаны на рисунке.

Для расчета модуля изменения импульса тела во время полета воспользуемся алгоритмом :

1) запишем проекции импульсов для точки бросания и для точки падения на координатные оси:

P 1 x = mv 0  cos α, P 2 x = mv 0  cos α;

P 1 y = mv 0  sin α, P 2 y = −mv 0  sin α;

2) найдем проекции изменения импульса на координатные оси по формулам

Δ P x = P 2 x − P 1 x = m v 0 cos α − m v 0 cos α = 0 ;

Δ P y = P 2 y − P 1 y = − m v 0 sin α − m v 0 sin α = − 2 m v 0 sin α ;

3) вычислим модуль изменения импульса как

Δ P = (Δ P x) 2 + (Δ P y) 2 = (Δ P y) 2 = | Δ P y | = 2 m v 0 sin α ,

где m - масса тела; v 0 - модуль начальной скорости тела.

Следовательно, вычисление модуля изменения импульса произведем по формуле

Δ P = 2 m v 0 sin 45 ° = 2 ⋅ 50 ⋅ 10 − 3 ⋅ 20 ⋅ 0,5 2 ≈ 1,4 кг ⋅ м/с.

Импульс в физике

В переводе с латинского «импульс» означает «толчок». Эту физическую величину называют также «количеством движения». Она была введена в науку примерно в то же время, когда были открыты законы Ньютона (в конце XVII века).

Разделом физики, изучающим движение и взаимодействие материальных тел, является механика. Импульс в механике – это векторная величина, равная произведению массы тела на его скорость: p=mv. Направления векторов импульса и скорости всегда совпадают.

В системе СИ за единицу импульса принимают импульс тела массой 1 кг, которое движется со скоростью 1 м/с. Поэтому единица импульса в СИ – это 1 кг∙м/с.

В расчетных задачах рассматривают проекции векторов скорости и импульса на какую-либо ось и используют уравнения для этих проекций: к примеру, если выбрана ось x, тогда рассматривают проекции v(x) и p(x). По определению импульса, эти величины связаны соотношением: p(x)=mv(x).

В зависимости от того, какая выбрана ось и куда она направлена, проекция вектора импульса на нее может быть как положительной, так и отрицательной величиной.

Закон сохранения импульса

Импульсы материальных тел при их физическом взаимодействии могут меняться. Например, при столкновении двух шариков, подвешенных на нитях, их импульсы взаимно изменяются: один шарик может прийти в движение из неподвижного состояния или увеличить свою скорость, а другой, наоборот, уменьшить скорость или остановиться. Однако в замкнутой системе, т.е. когда тела взаимодействуют только между собой и не подвергаются воздействию внешних сил, векторная сумма импульсов этих тел остается постоянной при любых их взаимодействиях и движениях. В этом заключается закон сохранения импульса. Математически его можно вывести из законов Ньютона.

Закон сохранения импульса применим также к таким системам, где какие-то внешние силы действуют на тела, но их векторная сумма равна нулю (например, сила тяжести уравновешивается силой упругости поверхности). Условно такую систему тоже можно считать замкнутой.

В математической форме закон сохранения импульса записывается так: p1+p2+…+p(n)=p1’+p2’+…+p(n)’ (импульсы p – векторы). Для системы из двух тел это уравнение выглядит как p1+p2=p1’+p2’, или m1v1+m2v2=m1v1’+m2v2’. К примеру, в рассмотренном случае с шариками суммарный импульс обоих шаров до взаимодействия будет равен суммарному импульсу после взаимодействия.

Пуля 22-го калибра имеет массу всего 2 г. Если кому-нибудь бросить такую пулю, то он легко сможет поймать ее даже без перчаток. Если же попытаться поймать такую пулю, вылетевшую из дула со скоростью 300 м/с, то даже перчатки тут не помогут.

Если на тебя катится игрушечная тележка, ты сможешь остановить ее носком ноги. Если на тебя катится грузовик, следует уносить ноги с его пути.


Рассмотрим задачу, которая демонстрирует связь импульса силы и изменения импульса тела.

Пример. Масса мяча равна 400 г, скорость, которую приобрел мяч после удара - 30 м/с. Сила, с которой нога действовала на мяч - 1500 Н, а время удара 8 мс. Найти импульс силы и изменение импульса тела для мяча.


Изменение импульса тела

Пример. Оценить среднюю силу со стороны пола, действующую на мяч во время удара.

1) Во время удара на мяч действуют две силы: сила реакции опоры , сила тяжести .

Сила реакции изменяется в течение времени удара, поэтому возможно найти среднюю силу реакции пола.