Простейшим представителем гомологического ряда алкенов является. Гомологический ряд алкенов. Построение названий алкенов

Выясним, что представляет собой реакция гидратации алкена. Для этого дадим краткую характеристику данного класса углеводородов.

Общая формула

Алкены - это ненасыщенные органические соединения, имеющие общую формулу СпН2п, в молекулах которых есть одна двойная связь, а также присутствую одинарные (простые) связи. Углеродные атомы при ней находятся в sp2 гибридном состоянии. Представителей этого класса называют этиленовыми, так как родоначальником данного ряда является этилен.

Особенности номенклатуры

Для того чтобы понять механизм гидратации алкена, необходимо выделить особенности их наименования. Согласно систематической номенклатуре, при составлении названия алкена используют определенный алгоритм действий.

Для начала необходимо определить самую длинную углеродную цепочку, включающую двойную связь. Цифрами указывают расположение углеводородных радикалов, начиная с самого маленького в русском алфавите.

При наличии в молекуле нескольких одинаковых радикалов, в названии добавляют уточняющие приставки ди-, три-, тетра.

Только после этого называют саму цепочку из углеродных атомов, добавляя в конце суффикс -ен. Чтобы уточнить расположение в молекуле непредельной (двойной) связи, ее указывают цифрой. Например, 2метилпентен-2.

Гибридизация в алкенах

Чтобы справиться с заданием следующего типа: «Установите молекулярную формулу алкена, гидратацией которого получили вторичный спирт», необходимо выяснить особенности строения представителей этого класса углеводородов. Наличие двойной связи объясняет способность СхНу вступать в реакции присоединения. Угол между двойными связями составляет 120 градусов. По ненасыщенной связи не наблюдается вращения, поэтому для представителей этого класса характерна геометрическая изомерия. В качестве основного реакционного места в молекулах алкенов выступает именно двойная связь.

Физические свойства

Они аналогичны предельным углеводородам. Низшие представители данного класса органических углеводородов являются при нормальных условиях газообразными веществами. Далее наблюдается постепенный переход к жидкостям, а для алкенов, в молекулах которых содержится больше семнадцати атомов углерода, характерно твердое состояние. Все соединения этого класса имеют незначительную растворимость в воде, при этом они отлично растворяются в полярных органических растворителях.

Особенности изомерии

Присутствие в молекулах соединений ряда этилена объясняет многообразие их структурных формул. Помимо изомеризации углеродного скелета, характерной для представителей всех классов органических соединений, у них есть межклассовые изомеры. В их качестве выступают циклопарафины. Например, для пропена межклассовым изомером является циклопропан.

Присутствие в молекулах данного класса двойной связи объясняет возможность геометрической цис- и транс- изомерии. Такие структуры возможны только у симметрических непредельных углеводородов, имеющих в составе двойную связь.

Существование данного варианта изомерии определяется невозможностью свободного вращения углеродных атомов по двойной связи.

Специфика химических свойств

Механизм гидратации алкена имеет определенные особенности. Данная реакция относится к электрофильному присоединению.

Как протекает реакция гидратации алкена? Чтобы ответить на данный вопрос, рассмотрим правило Марковникова. Суть его состоит в том, что гидратация алкенов несимметричного строения осуществляется определенным образом. Атом водорода будет присоединяться к тому углероду, который более гидрогенизирован. Гидроксильная группа присоединяется к углеродному атому, у которого меньше Н. Гидратация алкенов приводит к образованию вторичных одноатомных спиртов.

Для того чтобы реакция протекала в полном объеме, в качестве катализаторов используют минеральные кислоты. Они гарантируют ввод в реакционную смесь необходимого количества катионов водорода.

Гидратацией алкенов нельзя получить первичные одноатомные спирты, поскольку не будет соблюдаться правило Марковникова. Данная особенность используется в органическом синтезе вторичных спиртов. Любая гидратация алкенов осуществляется без использования жестких условий, поэтому процесс нашел свое практическое использование.

Если в качестве исходного представителя класса СпН2п берут этилен, правило Марковникова не работает. Какие спирты нельзя получить гидратацией алкенов? Невозможно получить в результате такого химического процесса первичные спирты из несимметричных алкенов. Как используется гидратация алкенов? Получение спиртов вторичного вида осуществляется именно таким способом. Если в качестве углеводорода выбирается представитель ряда ацетилена (алкины), гидратация приводит к получению кетонов и альдегидов.

По правилу Марковникова осуществляется гидратация алкенов. Реакция имеет механизм электрофильного присоединения, суть которого хорошо изучена.

Приведем несколько конкретных примеров подобных превращений. К чему приводит гидратация алкенов? Примеры, предлагаемые в школьном курсе химии, свидетельствуют о том, что из пропена можно получить при взаимодействии с водой пропанол-2, а из бутена-1 получают бутанол-2.

В промышленных объемах используется гидратация алкенов. Спирты вторичного состава получают именно таким способом.

Галогенирование

Качественной реакцией на двойную связь считается взаимодействие непредельных углеводородов с молекулами галогенов. Мы уже проанализировали, как происходит гидратация алкенов. Механизм галогенирования аналогичен.

Молекулы галогенов имеют ковалентную неполярную химическую связь. При проявлении временных флуктуаций у каждой молекулы возникает электрофильность. В результате вырастает вероятность протекания присоединения, сопровождающегося разрушением двойной связи в молекулах ненасыщенных углеводородов. После завершения процесса продуктом реакции является дигалогенпроизводное алкана. Бромирование считают качественной реакцией на непредельные углеводороды, поскольку происходит постепенное исчезновение бурой окраски галогена.

Гидрогалогенирование

Мы уже рассмотрели, какова формула гидратации алкенов. Аналогичный вариант имеют и реакции взаимодействия с бромоводородом. В данном неорганическом соединении ковалентная полярная химическая связь, поэтому происходит смещение электронной плотности к более электроотрицательному атому брома. Водород приобретает частичный положительный заряд, отдавая галогену электрон, атакует молекулу алкена.

Если непредельный углеводород имеет несимметричное строение, при его взаимодействии с галогеноводородом происходит образование двух продуктов. Так, из пропена при гидрогалогенировании получают 1-бромпроан и 2-бромпропан.

Для предварительной оценки вариантов взаимодействия учитывают электроотрицательность выбираемого заместителя.

Окисление

Двойная связь, присущая молекулам непредельных углеводородов, подвергается воздействию сильных окислителей. Они также имеют электрофильный характер, применяются в химической промышленности. Особый интерес представляет окисление алкенов водным (либо слабощелочным) раствором перманганата калия. Ее называют реакцией гидроксилирования, так как в итоге получают двухатомные спирты.

Например, при окислении молекул этилена водным раствором перманганата калия получают этиндиол-1,2 (этиленгликоль). Это взаимодействие считают качественной реакцией на двойную связь, так как в ходе взаимодействия наблюдается обесцвечивание раствора перманганата калия.

В кислой среде (при жестких условиях) среди продуктов реакции можно отметить альдегид.

При взаимодействии с кислородом воздуха наблюдается окисление соответствующего алкена до углекислого газа, водяного пара. Процесс сопровождается выделением тепловой энергии, поэтому в промышленности его используют для получения тепла.

Наличие двойной связи в молекуле алкена свидетельствует о возможности протекания у данного класса реакций гидрирования. Взаимодействие СпН2п с молекулами водорода происходит при термическом использовании в качестве катализаторов платины, никеля.

Многие представители класса алкенов склонны к озонированию. При невысоких температурах представители данного класса реагируют с озоном. Процесс сопровождается разрывом двойной связи, образованием циклических перекисных соединений, именуемых озонидами. В их молекулах присутствуют связи О-О, поэтому вещества являются взрывоопасными веществами. Озониды не синтезируют в чистом виде, их разлагают, используя процесс гидролиза, затем восстанавливают с помощью цинка. Продуктами такой реакции выступают карбонильные соединения, выделяемые и идентифицируемые исследователями.

Полимеризация

Данная реакция предполагает последовательное объединение нескольких молекул алкена (мономеров) в крупную макромолекулу (полимер). Из исходного этена получают полиэтилен, имеющий промышленное применение. Полимером называют вещество, которое имеет высокую молекулярную массу.

Внутри макромолекулы располагается определенное количество повторяющихся фрагментов, называемых структурными звеньями. Для полимеризации этилена в качестве структурного звена рассматривается группа - СН2—СН2-. Степень полимеризации показывает количество звеньев, повторяющихся в структуре полимера.

Степень полимеризации определяет свойства полимерных соединений. Например, полиэтилен с короткими цепями представляет собой жидкость, имеющую смазочные свойства. Для макромолекулы с длинными цепями свойственно твердое состояние. Гибкость и пластичность материала применяют в изготовлении труб, бутылок, пленок. Полиэтилен, в котором степень полимеризации составляет пять-шесть тысяч, обладает повышенной прочностью, поэтому применяется при производстве прочных нитей, жестких труб, литых изделий.

Среди продуктов, получаемых путем полимеризации алкенов, имеющих практическое значение, выделим поливинилхлорид. Данное соединение получают путем полимеризации винилхлорида. Получаемый продукт имеет ценные эксплуатационные характеристики. Он отличается повышенной стойкостью к воздействию агрессивных химических веществ, негорюч, легко поддается окрашиванию. Что можно изготовить из поливинилхлорида? Портфели, плащи, клеенку, искусственную кожу, кабели, изоляцию электрических проводов.

Тефлон является продуктом полимеризации тетрафторэтилена. Данное органическое инертное соединение устойчиво к резким перепадам температур.

Полистирол представляет собой упругое прозрачное вещество, образуемое путем полимеризации исходного стирола. Он незаменим при изготовлении диэлектриков в радио- и электротехнике. Кроме того, полистирол в большом количестве применяется для производства кислотоупорных труб, игрушек, расчесок, пористых пластмасс.

Особенности получения алкенов

Представители данного класса востребованы в современной химической промышленности, поэтому были разработаны разнообразные способы их промышленного и лабораторного получения. В природе этилен и его гомологи не существуют.

Многие лабораторные варианты получения представителей данного класса углеводородов связаны с реакциями, обратными присоединению, именуемые отщеплением (элиминированием). Например, при дегидрировании парафинов (предельных углеводородов) получают соответствующие алкены.

При взаимодействии галогенпроизводных алканов с металлическим магнием также можно получить соединения с общей формулой СпН2п. Элиминирование осуществляется по правилу Зайцева, обратному правилу Марковникова.

В промышленных объемах непредельные углеводороды ряда этилена получают путем крекинга нефти. В газах крекинга и пиролиза нефти и газа содержится от десяти до двадцати процентов непредельных углеводородов. В смеси продуктов реакции находятся и парафины, и алкены, которые отделяют друг от друга путем фракционной перегонки.

Некоторые области применения

Алкены являются важным классом органических соединений. Возможность их применения объясняется отличной реакционной способностью, простотой получения, приемлемой стоимостью. Среди многочисленных промышленных отраслей, использующих алкены, выделим полимерную промышленность. Огромное количество этилена, пропилена, их производных уходит на изготовление полимерных соединений.

Именно поэтому так актуальны вопросы, касающиеся поиска новых путей производства алкеновых углеводородов.

Поливинилхлорид считается одним из важнейших по применению продуктов, получаемых из алкенов. Для него характерна химическая и термическая устойчивость, незначительная горючесть. Поскольку данное вещество не растворяется в минеральных, но растворимо в органических растворителях, его можно использовать в разных промышленных отраслях.

Его молекулярная масса составляет несколько сотен тысяч. При повышении температуры вещество способно к разложению, сопровождаемому выделением хлороводорода.

Особый интерес представляют его диэлектрические свойства, используемые в современной электротехнике. Среди отраслей промышленности, в которых применяют поливинилхлорид, выделим изготовление искусственной кожи. Получаемый материал по эксплуатационным характеристикам ничуть не уступает натуральному материалу, при этом имеет гораздо меньшую стоимость. Одежда из такого материала становится все более популярной у модельеров, создающих яркие и красочные коллекции молодежной одежды из поливинилхлорида разного цвета.

В больших количествах поливинилхлорид применяют в качестве уплотнителя в холодильниках. Благодаря эластичности, упругости это химическое соединение востребовано при изготовлении пленок и современных натяжных потолков. Моющиеся обои дополнительно покрывают тонкой пленкой ПВХ. Это позволяет добавить им механическую прочность. Такие отделочные материалы станут идеальным вариантом для проведения косметического ремонта в офисных помещениях.

Кроме того, гидратация алкенов приводит к образованию первичных и вторичных одноатомных спиртов, которые являются отличными органическими растворителями.

Алкены - непредельные углеводороды, в составе которых есть одна двойная связь. Примеры алкенов:

Методы получения алкенов.

1. Крекинг алканов при 400-700°С. Реакция идет по свободнорадикальному механизму:

2. Дегидрирование алканов:

3. Реакция элиминирования (отщепление): от соседних атомов углерода отщепляются 2 атома или 2 группы атомов, и образуется двойная связь. К таким реакциям относят:

А) Дегидратацию спиртов (нагрев свыше 150°С, при участии серной кислоты , как водоотнимающего реагента):

Б) Отщепление галогенводородов при воздействии спиртового раствора щелочи:

Атом водорода отщепляется преимущественно от того атома углерода, который связан с меньшим числом атомов водорода (наименее гидрогенизированного атома) - правило Зайцева .

В) Дегалогенирование:

Химические свойства алкенов.

Свойства алкенов обуславливаются наличием кратной связи, поэтому алкены вступают в реакции электрофильного присоединения, которое протекает в несколько стадий (Н-Х - реагент):

1-я стадия:

2-я стадия:

.

Ион водорода в такого типа реакциях принадлежит тому атому углерода, который имеет более отрицательный заряд. Распределение плотности такое:

Если в качестве заместителя стоит донор, который проявляется +I- эффект, то электронная плотность смещается в сторону наиболее гидрогенизированного атома углерода, создавая на нем частично отрицательный заряд. Реакции идут по правилу Марковникова : при присоединении полярных молекул типа НХ (HCl , HCN , HOH и т.д.) к несимметричным алкенам водород присоединяется преимущественно к более гидрогенизированому атому углерода при двойной связи.

А) Реакции присоединения:
1) Гидрогалогенирование:

Реакция идет по правилу Марковникова. Но если в реакции присутствует пероксид , то правило не учитывается:

2) Гидратация. Реакция идет по правилу Марковникова в присутствие фосфорной или серной кислоты :

3) Галогенирование. В результате происходит обесцвечивание бромной воды - это качественная реакция на кратную связь:

4) Гидрирование. Реакция протекает в присутствие катализаторов.

Низшие алкены (С 2 - С 5), в промышленных масштабах получают из газов, образующихся при термической переработке нефти и нефтепродуктов. Алкены можно также получить, используя лабораторные методы синтеза.

4.5.1. Дегидрогалогенирование

При обработке галогеналканов основаниями в безводных растворителях, например, спиртовым раствором едкого кали, происходит отщепление галогеноводорода.

4.5.2. Дегидратация

При нагревании спиртов с серной или фосфорной кислотами происходит внутримолекулярная дегидратация (- элиминирование).

Преобладающее направление реакции, как и в случае дегидрогалогенирования, - образование наиболее устойчивого алкена (правило Зайцева).

Дегидратацию спиртов можно провести, пропуская пары спирта над катализатором (оксиды алюминия или тория) при 300 - 350 о С.

4.5.3. Дегалогенирование вицинальных дигалогенидов

Действием цинка в спирте дибромиды, содержащие галогены у соседних атомов (вицинальные), могут быть превращены в алкены.

4.5.4. Гидрирование алкинов

При гидрировании алкинов в присутствии платинового или никелевого катализаторов, активность которых уменьшена добавлением небольшого количества соединений свинца (каталитический яд), образуется алкен, который не подвергается дальнейшему восстановлению.

4.5.5. Восстановительное сочетание альдегидов и кетонов

При обработке алюмогидридом лития и хлоридом титана(III) из двух молекул альдегида или кетона с хорошими выходами образуются ди- или соответственно тетразамещённые алкены.

5. АЛКИНЫ

Алкинами называются углеводороды, содержащие тройную углерод-углеродную связь –СС–.

Общая формула простых алкинов С n H 2n-2 . Простейшим представителем класса алкинов является ацетилен H–СС–H, поэтому алкины называют также ацетиленовыми углеводородами.

5.1. Строение ацетилена

Атомы углерода ацетилена находятся в sp -гибридном состоянии. Изобразим орбитальную конфигурацию такого атома. При гибридизации 2s -орбитали и -орбитали образуются две равноценные sp -гибридные орбитали, расположенные на одной прямой, и остаются две негибридизованные р -орбитали.

Рис. 5.1 Схема формирования sp -гибридных орбиталей атома углерода

Направленияи формы орбиталей s р -гибридизованного атома углерода: гибридизованные орбитали эквивалентны, максимально удалены друг от друга

В молекуле ацетилена простая связь (- связь) между атомами углерода образована перекрыванием двух sp -гибридизованных орбиталей. Две взаимно перпендикулярные - связи возникают при боковом перекрывании двух пар негибридизованных 2р- орбиталей, - электронные облака охватывают скелет так, что электронное облако имеет симметрию, близкую к цилиндрической. Связи с атомами водорода образуются за счёт sp -гибридных орбиталей атома углерода и 1s -орбитали атома водорода, молекула ацетилена линейна.

Рис. 5.2 Молекула ацетилена

а - боковое перекрывание орбиталей дает две -связи;

б - молекула линейна, -облако имеет цилиндрическую форму

В пропине простая связь (- связь) С sp sp3 короче аналогичной связи С sp sp2 в алкенах, это объясняется тем, что sp- орбиталь ближе к ядру, чем sp 2 - орбиталь .

Тройная углерод-углеродная связь С  С короче двойной связи, а общая энергия тройной связи приблизительно равна сумме энергий одной простой связи С–С (347 кДж/моль) и двух -связей (259·2 кДж/моль) (табл. 5.1).

К непредельным относят углеводороды, содержащие в молекулах кратные связи между атомами углерода. Непредельными являются алкены, алкины, алкадиены (полиены) . Непредельным характером обладают также циклические углеводороды, содержащие двойную связь в цикле (циклоалкены ), а также циклоалканы с небольшим числом атомов углерода в цикле (три или четыре атома). Свойство «непредельности» связано со способностью этих веществ вступать в реакции присоединения, прежде всего водорода, с образованием предельных, или насыщенных углеводородов - алканов.

Строение алкенов

Ациклические углеводороды, содержащие в молекуле помимо одинарных связей, одну двойную связь между атомами углерода и соответствующие общей формуле СnН2n. Свое второе название - олефины - алкены получили по аналогии с жирными непредельными кислотами (олеиновая, линолевая), остатки которых входят в состав жидких жиров - масел.
Атомы углерода, между которыми есть двойная связь, находятся в состоянии sр 2 -гибридизации. Это означает, что в гибридизации участвуют одна s- и две р-орбитали, а одна р-орбиталь остается негибридизованной. Перекрывание гибридных орбиталей приводит к образованию σ-связи, а за счет негибридизованных р-орбиталей
соседних атомов углерода образуется вторая, π-связь. Таким образом, двойная связь состоит из одной σ- и одной π — связи. Гибридные орбитали атомов, образующих двойную связь, находятся в одной плоскости, а орбитали, образующие π -связь, располагаются перпендикулярно плоскости молекулы. Двойная связь (0,132 им) короче одинарной, а ее энергия больше, т. к. она является более прочной. Тем не менее, наличие подвижной, легко поляризуемой π -связи приводит к тому, что алкены химически более активны, чем алканы, и способны вступать в реакции присоединения.

Строение этилена

Образование двойной связи в алкенах

Гомологический ряд этена

Неразветвленные алкены составляют гомологи- ческий ряд этена (этилена ): С 2 Н 4 - этен, С 3 Н 6 - пропен, С 4 Н 8 - бутен, С 5 Н 10 - пентен, С 6 Н 12 - гексен, С 7 Н 14 - гептен и т.д.

Изомерия алкенов

Для алкенов характерна структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета. Простейший алкен, для которого характерны структурные изомеры, - это бутен:


Особым видом структурной изомерии является изомерия положения двойной связи:

Алкены изомерны циклоалканам (межклассовая изомерия), например:



Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение атомов углерода, поэтому молекулы алканов могут приобретать самую разнообразную форму. Вращение вокруг двойной связи невозможно, что приводит к появлению у алкенов еще одного вида изомерии - геометрической, или цис- и транс- изомерии .


Цис-изомеры отличаются от транс-изомеров пространственным расположением фрагментов молекулы (в данном случае метильных групп) относительно плоскости π -связи, а следовательно, и свойствами.

Номенклатура алкенов

1. Выбор главной цепи. Образование названия углеводорода начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле. В случае алкенов главная цепь должна содержать двойную связь.
2. Нумерация атомов главной цепи. Нумерация атомов главной цепи начинается с того конца, к которому ближе находится двойная связь.
Например,правильное название соединения:

Если по положению двойной связи нельзя определить начало нумерации атомов в цепи, то его определяет положение заместителей так же, как для предельных углеводородов.

3. Формирование названия. В конце названия указывают номер атома углерода, у которого начинается двойная связь, и суффикс -ен , обозначающий принадлежность соединения к классу алкенов. Например:

Физические свойства алкенов

Первые три представителя гомологического ряда алкенов - газы; вещества состава С5Н10 — С16Н32 - жидкости; высшие алкены - твердые вещества.
Температуры кипения и плавления закономерно повышаются при увеличении молекулярной массы соединений.

Химические свойства алкенов

Реакции присоединения . Напомним, что отличительной чертой представителей непредельных углеводородов - алкенов является способность вступать в реакции присоединения. Большинство этих реакций протекает по механизму электрофильного присоединения .
1. Гидрирование алкенов. Алкены способны присоединять водород в присутствии катализаторов гидрирования, металлов - платины, палладия, никеля:

Эта реакция протекает при атмосферном и повышенном давлении и не требует высокой температуры, т. к. является экзотермической. При повышении температуры на тех же катализаторах может пойти обратная реакция - дегидрирование.

2. Галогенирование (присоединение галогенов) . Взаимодействие алкена с бромной водой или раствором брома в органическом растворителе (СС14) приводит к быстрому обесцвечиванию этих растворов в результате присоединения молекулы галогена к алкену и образования дигалогеналканов.
3. Гидрогалогенирование (присоединение галогеноводорода) .

Эта реакция подчиняется
При присоединении галогеноводорода к алкену водород присоединяется к более гидрированному атому углерода, т. е. атому, при котором находится больше атомов водорода, а галоген - к менее гидрированному.


4. Гидратация (присоединение воды). Гидратация алкенов приводит к образованию спиртов. Например, присоединение воды к этену лежит в основе одного из промышленных способов получения этилового спирта.

Обратите внимание на то, что первичный спирт (с гидроксогруппой при первичном углероде) образуется только при гидратации этена. При гидратации пропена или других алкенов образуются вторичные спирты .

Эта реакция протекает также в соответствии с правилом Марковникова - катион водорода присоединяется к более гидрированному атому углерода, а гидроксогруппа - к менее гидрированному.
5. Полимеризация. Особым случаем присоединения является реакция полимеризации алкенов:

Эта реакция присоединения протекает по свободнорадикальному механизму.
Реакции окисления.
1. Горение. Как и любые органические соединения, алкены горят в кислороде с образованием СО2 и Н2О:

2. Окисление в растворах. В отличие от алканов алкены легко окисляются под действием растворов перманганата калия. В нейтральных или щелочных растворах происходит окисление алкенов до диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам, между которыми до окисления существовала двойная связь:




Алкены ненасыщенные алифатические углеводороды с одной или несколькими двойными углерод-углеродными связями. Двойная связь превращает два атома углерода в плоскую структуру с валентными углами между соседними связями по 120°С:

Гомологический ряд алкенов имеет общую формулу двумя его первыми членами являются этен (этилен) и пропен (пропилен):

Члены ряда алкенов с четырьмя или большим числом атомов углерода обнаруживают изомерию положения связей. Например, алкен с формулой имеет три изомера, два из которых являются изомерами положения связей:

Заметим, что нумерация цепи алкенов производится с того ее конца, который ближе к двойной связи. Положение двойной связи указывается меньшим из двух номеров, которые соответствуют двум атомам углерода, связанным между собой двойной связью. Третий изомер имеет разветвленную структуру:

Число изомеров какого-либо алкена возрастает с числом атомов углерода. Например, гексен имеет три изомера положения связей:

диенов является бута-1,3-диен, или просто бутадиен:

Соединения, содержащие три двойные связи, называются триенами. Соединения с несколькими двойными связями имеют общее название полиены.

Физические свойства

Алкены имеют несколько более низкие температуры плавления и кипения, чем соответствующие им алканы. Например, пентан имеет температуру кипения . Этилен, пропен и три изомера бутена при комнатной температуре и нормальном давлении находятся в газообразном состоянии. Алкены с числом атомов углерода от 5 до 15 в нормальных условиях находятся в жидком состоянии. Их летучесть, как и у алканов, возрастает при наличии разветвления в углеродной цепи. Алкены с числом атомов углерода больше 15 при нормальных условиях представляют собой твердые вещества.

Получение в лабораторных условиях

Двумя основными способами получения алкенов в лабораторных условиях являются дегидратация спиртов и дегидрогалогенирование галогеноалканов. Например, этилен можно получить дегидратацией этанола при действии избытка концентрированной серной кислоты при температуре 170 °С (см. разд. 19.2):

Этилен можно также получить из этанола, пропуская пары этанола над поверхностью нагретого оксида алюминия. Для этой цели можно использовать установку, схематически изображенную на рис. 18.3.

Второй распространенный метод получения алкенов основан на проведении дегидрогалогенирования галогеноалканов в условиях основного катализа

Механизм реакции элиминирования такого типа описан в разд. 17.3.

Реакции алкенов

Алкены обладают намного большей реакционной способностью, чем алканы. Это обусловлено способностью -электронов двойной связи притягивать электрофилы (см. разд. 17.3). Поэтому характерные реакции алкенов представляют собой главным образом реакции электрофильного присоединения по двойной связи:

Многие из этих реакций имеют ионные механизмы (см. разд. 17.3).

Гидрирование

Если какой-нибудь алкен, например этилен, смешать с водородом и пропустить эту смесь над поверхностью платинового катализатора при комнатной температуре или никелевого катализатора при температуре около 150°С, то произойдет присоединение

водорода по двойной связи алкена. При этом образуется соответствующий алкан:

Реакция этого типа представляет собой пример гетерогенного катализа. Его механизм описан в разд. 9.2 и схематически показан на рис. 9.20.

Присоединение галогенов

Хлор или бром легко присоединяются по двойной связи алкена; эта реакция протекает в неполярных растворителях, например в тетрахлорометане или гексане. Реакция протекает по ионному механизму, который включает образование карбкатиона. Двойная связь поляризует молекулу галогена, превращая ее в диполь:

Поэтому раствор брома в гексане или тетрахлорометане при встряхивании с алкеном обесцвечивается. То же самое происходит, если встряхивать алкен с бромной водой. Бромная вода представляет собой раствор брома в воде. Этот раствор содержит бромноватистую кислоту . Молекула бромноватистой кислоты присоединяется по двойной связи алкена, и в результате образуется бромозамещенный спирт. Например

Присоединение галогеноводородов

Механизм реакции этого типа описан в разд. 18.3. В качестве примера рассмотрим присоединение хлороводорода к пропену:

Отметим, что продукт этой реакции представляет собой 2-хлоропропан, а не 1-хлоро-пропан:

В таких реакциях присоединения наиболее электроотрицательный атом или наиболее электроотрицательная группа всегда присоединяются к атому углерода, связанному с

наименьшим числом атомов водорода. Эта закономерность носит название правила Марковникова.

Предпочтительное присоединение электроотрицательного атома или группы к атому углерода, связанному с наименьшим числом атомов водорода, обусловлено повышением устойчивости карбкатиона по мере возрастания числа алкильных заместителей на атоме углерода. Это повышение устойчивости в свою очередь объясняется индуктивным эффектом, возникающим в алкильных группах, так как они являются донорами электронов:

В присутствии какого-либо органического пероксида пропен реагирует с бромоводородом, образуя т. е. не по правилу Марковникова. Такой продукт называется антимарковниковским. Он образуется в результате протекания реакции по радикальному, а не ионному механизму.

Гидратация

Алкены реагируют с холодной концентрированной серной кислотой, образуя алкил-гидросульфаты. Например

Эта реакция представляет собой присоединение, поскольку в ней происходит присоединение кислоты по двойной связи. Она является обратной реакцией по отношению к дегидратации этанола с образованием этилена. Механизм этой реакции подобен механизму присоединения галогеноводородов по двойной связи. Он включает образование промежуточного карбкатиона. Если продукт этой реакции разбавить водой и осторожно нагревать, он гидролизуется, образуя этанол:

Реакция присоединения серной кислоты к алкенам подчиняется правилу Марковникова:

Реакция с подкисленным раствором перманганата калия

Фиолетовая окраска подкисленного раствора перманганата калия исчезает, если этот раствор встряхивают в смеси с каким-либо алкеном. Происходит гидроксилирование алкена (введение в него гидроксигруппы, образующейся вследствие окисления), который в результате превращается в диол. Например, при встряхивании избыточного количества этилена с подкисленным раствором происходит образование этан-1,2-диола (этиленгликоля)

Если алкен встряхивают с избыточным количеством раствора -ионов, происходит окислительное расщепление алкена, приводящее к образованию альдегидов и кетонов:

Альдегиды, образующиеся при этом, подвергаются дальнейшему окислению с образованием карбоновых кислот.

Гидроксилирование алкенов с образованием диолов может также проводиться с помощью щелочного раствора перманганата калия.

Реакция с пербензойной кислотой

Алкены реагируют с пероксикислотами (надкислотами), например с пербензойной кислотой, образуя простые циклические эфиры (эпоксисоединения). Например

При осторожном нагревании эпоксиэтана с разбавленным раствором какой-либо кислоты образуется этан-1,2-диол:

Реакции с кислородом

Как и все другие углеводороды, алкены горят и при обильном доступе воздуха образуют диоксид углерода и воду:

При ограниченном доступе воздуха горение алкенов приводит к образованию моноксида углерода и воды:

Поскольку алкены имеют более высокое относительное содержание углерода, чем соответствующие алканы, они горят с образованием более дымного пламени. Это обусловлено образованием частиц углерода:

Если смешать какой-либо алкен с кислородом и пропустить эту смесь над поверхностью серебряного катализатора, при температуре около 200 °С образуется эпоксиэтан:

Озонолиз

При пропускании газообразного озона через раствор какого-либо алкена в трихлорометане или тетрахлорометане при температуре ниже 20 °С образуется озонид соответствующего алкена (оксиран)

Озониды - неустойчивые соединения и могут быть взрывоопасными. Они подвергаются гидролизу с образованием альдегидов или кетонов. Например

В этом случае часть метаналя (формальдегида) реагирует с пероксидом водорода, образуя метановую (муравьиную) кислоту:

Полимеризация

Простейшие алкены могут полимеризоваться с образованием высокомолекулярных соединений, которые обладают той же эмпирической формулой, что и исходный алкен:

Эта реакция протекает при высоком давлении, температуре 120°С и в присутствии кислорода, который играет роль катализатора. Однако полимеризацию этилена можно проводить и при более низком давлении, если воспользоваться катализатором Циглера. Одним из наиболее распространенных катализаторов Циглера является смесь триэтилалюминия и тетрахлорида титана.

Полимеризация алкенов более подробно рассматривается в разд. 18.3.