Вычисление общего множителя за скобки. Вынесение за скобки общего множителя: правило, примеры

В этой статье мы остановимся на вынесении за скобки общего множителя . Для начала разберемся, в чем состоит указанное преобразование выражения. Дальше приведем правило вынесения общего множителя за скобки и подробно рассмотрим примеры его применения.

Навигация по странице.

Например, слагаемые в выражении 6·x+4·y имеют общий множитель 2 , который не записан явно. Его можно увидеть лишь после того, как представить число 6 в виде произведения 2·3 , а 4 в виде произведения 2·2 . Итак, 6·x+4·y=2·3·x+2·2·y=2·(3·x+2·y) . Еще пример: в выражении x 3 +x 2 +3·x слагаемые имеют общий множитель x , который становится явно виден после замены x 3 на x·x 2 (при этом мы использовали ) и x 2 на x·x . После вынесения его за скобки получим x·(x 2 +x+3) .

Отдельно скажем про вынесение минуса за скобки. Фактически вынесение минуса за скобки означает вынесение за скобки минус единицы. Для примера вынесем за скобки минус в выражении −5−12·x+4·x·y . Исходное выражение можно переписать в виде (−1)·5+(−1)·12·x−(−1)·4·x·y , откуда отчетливо виден общий множитель −1 , который мы и выносим за скобки. В результате придем к выражению (−1)·(5+12·x−4·x·y) , в котором коэффициент −1 заменяется просто минусом перед скобками, в итоге имеем −(5+12·x−4·x·y) . Отсюда хорошо видно, что при вынесении минуса за скобки в скобках остается исходная сумма, в которой изменены знаки всех ее слагаемых на противоположные.

В заключение этой статьи заметим, что вынесение за скобки общего множителя применяется очень широко. Например, с его помощью можно более рационально вычислять значения числовых выражений . Также вынесение за скобки общего множителя позволяет представлять выражения в виде произведения, в частности, на вынесении за скобки основан один из методов разложения многочлена на множители .

Список литературы.

  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.

При сложении и вычитании алгебраический дробей с разными знаменателями сначала дроби приводят к общему знаменателю . Это значит, находят такой один знаменатель, который делится на исходный знаменатель каждой алгебраической дроби, входящей в состав данного выражения.

Как известно, если числитель и знаменатель дроби умножить (или разделить) на одно и то же число, отличное от нуля, то значение дроби не изменится. Это является основным свойством дроби. Поэтому, когда дроби приводят к общему знаменателю, по-сути умножают исходный знаменатель каждой дроби на недостающий множитель до общего знаменателя. При этом надо умножить на этот множитель и числитель дроби (для каждой дроби он свой).

Например, дана такая сумма алгебраических дробей:

Требуется упростить выражение, т. е. сложить две алгебраические дроби. Для этого в первую очередь надо привести слагаемые-дроби к общему знаменателю. Первым делом следует найти одночлен, который делится и на 3x и на 2y. При этом желательно, чтобы он был наименьший, т. е. найти наименьшее общее кратное (НОК) для 3x и 2y.

Для числовых коэффициентов и переменных НОК ищется отдельно. НОК(3, 2) = 6, а НОК(x, y) = xy. Далее найденные значения перемножаются: 6xy.

Теперь надо определить, на какой множитель надо умножить 3x, чтобы получить 6xy:
6xy ÷ 3x = 2y

Значит, при приведении первой алгебраической дроби к общему знаменателю ее числитель надо умножить на 2y (знаменатель уже был умножен при приведении к общему знаменателю). Аналогично ищется множитель для числителя второй дроби. Он будет равен 3x.

Таким образом, получаем:

Далее уже можно действовать как с дробями с одинаковыми знаменателями: складываются числители, а в знаменателе пишется один общий:

После преобразований получается упрощенное выражение, представляющее собой одну алгебраическую дробь, являющуюся суммой двух исходных:

Алгебраические дроби в исходном выражении могут содержать знаменатели, представляющие собой многочлены, а не одночлены (как в приведенном выше примере). В таком случае, перед поиском общего знаменателя следует разложить знаменатели на множители (если это возможно). Далее общий знаменатель собирается из разных множителей. Если множитель есть в нескольких исходных знаменателях, то его берут единожды. Если множитель имеет разные степени в исходных знаменателях, то его берут с большей. Например:

Здесь многочлен a 2 – b 2 можно представить как произведение (a – b)(a + b). Множитель 2a – 2b раскладывается как 2(a – b). Таким образом, общий знаменатель будет равен 2(a – b)(a + b).

Для решения примеров с дробями необходимо уметь находить наименьший общий знаменатель. Ниже приведена подробная инструкция.

Как найти наименьший общий знаменатель – понятие

Наименьший общий знаменатель (НОЗ) простыми словами – это минимальное число, которое делится на знаменатели всех дробей данного примера. Другими словами его называют Наименьшим Общим Кратным (НОК). НОЗ используют только в том случае, если знаменатели у дробей различны.

Как найти наименьший общий знаменатель – примеры

Рассмотрим примеры нахождения НОЗ.

Вычислить: 3/5 + 2/15.

Решение (Последовательность действий):

  • Смотрим на знаменатели дробей, убеждаемся, что они разные и выражения максимально сокращены.
  • Находим наименьшее число, которое делится и на 5, и на 15. Таким числом будет 15. Таким образом, 3/5 + 2/15 = ?/15.
  • Со знаменателем разобрались. Что будет в числителе? Помочь выяснить это нам поможет дополнительный множитель. Дополнительный множитель – это число, получившееся при делении НОЗ на знаменатель конкретной дроби. Для 3/5 дополнительный множитель равен 3, так как 15/5 = 3. Для второй дроби дополнительным множителем будет 1, так как 15/15 = 1.
  • Выяснив дополнительный множитель, умножаем его на числители дробей и складываем получившиеся значения. 3/5 + 2/15 = (3*3+2*1)/15 = (9+2)/15 = 11/15.


Ответ: 3/5 + 2/15 = 11/15.

Если в примере складываются или вычитаются не 2, а 3 или больше дробей, то НОЗ нужно искать уже для стольких дробей, сколько дано.

Вычислить: 1/2 – 5/12 + 3/6

Решение (последовательность действий):

  • Находим наименьший общий знаменатель. Минимальным числом, делящимся на 2, 12 и 6 будет 12.
  • Получим: 1/2 – 5/12 + 3/6 = ?/12.
  • Ищем дополнительные множители. Для 1/2 – 6; для 5/12 – 1; для 3/6 – 2.
  • Умножаем на числители и приписываем соответствующие знаки: 1/2 – 5/12 + 3/6 = (1*6 – 5*1 + 2*3)/12 = 7/12.

Ответ: 1/2 – 5/12 + 3/6 = 7/12.

В рамках изучений тождественных преобразований очень важна тема вынесения общего множителя за скобки. В данной статье мы поясним, в чем именно заключается такое преобразование, выведем основное правило и разберем характерные примеры задач.

Yandex.RTB R-A-339285-1

Понятие вынесения множителя за скобки

Чтобы успешно применять данное преобразование, нужно знать, для каких выражений оно используется и какой результат надо получить в итоге. Поясним эти моменты.

Вынести общий множитель за скобки можно в выражениях, представляющих собой суммы, в которых каждое слагаемое является произведением, причем в каждом произведении есть один множитель, общий (одинаковый) для всех. Он так и называется – общим множителем. Именно его мы будем выносить за скобки. Так, если у нас есть произведения 5 · 3 и 5 · 4 , то мы можем вынести за скобки общий множитель 5 .

В чем состоит данное преобразование? В ходе него мы представляем исходное выражение как произведение общего множителя и выражения в скобках, содержащего сумму всех исходных слагаемых, кроме общего множителя.

Возьмем пример, приведенный выше. Вынесем общий множитель 5 в 5 · 3 и 5 · 4 и получим 5 (3 + 4) . Итоговое выражение – это произведение общего множителя 5 на выражение в скобках, которое является суммой исходных слагаемых без 5 .

Данное преобразование базируется на распределительном свойстве умножения, которое мы уже изучали до этого. В буквенном виде его можно записать как a · (b + c) = a · b + a · c . Поменяв правую часть с левой, мы увидим схему вынесения общего множителя за скобки.

Правило вынесения общего множителя за скобки

Используя все сказанное выше, выведем основное правило такого преобразования:

Определение 1

Чтобы вынести за скобки общий множитель, надо записать исходное выражение в виде произведения общего множителя и скобок, которые включают в себя исходную сумму без общего множителя.

Пример 1

Возьмем простой пример вынесения. У нас есть числовое выражение 3 · 7 + 3 · 2 − 3 · 5 , которое является суммой трех слагаемых 3 · 7 , 3 · 2 и общего множителя 3 . Взяв за основу выведенное нами правило, запишем произведение как 3 · (7 + 2 − 5) . Это и есть итог нашего преобразования. Запись всего решения выглядит так: 3 · 7 + 3 · 2 − 3 · 5 = 3 · (7 + 2 − 5) .

Мы можем выносить множитель за скобки не только в числовых, но и в буквенных выражениях. Например, в 3 · x − 7 · x + 2 можно вынести переменную x и получить 3 · x − 7 · x + 2 = x · (3 − 7) + 2 , в выражении (x 2 + y) · x · y − (x 2 + y) · x 3 – общий множитель (x 2 + y) и получить в итоге (x 2 + y) · (x · y − x 3) .

Определить сразу, какой множитель является общим, возможно не всегда. Иногда выражение нужно предварительно преобразовать, заменив числа и выражения тождественно равными им произведениями.

Пример 2

Так, к примеру, в выражении 6 · x + 4 · y можно вынести общий множитель 2 , не записанный в явном виде. Чтобы его найти, нам нужно преобразовать исходное выражение, представив шесть как 2 · 3 , а четыре как 2 · 2 . То есть 6 · x + 4 · y = 2 · 3 · x + 2 · 2 · y = 2 · (3 · x + 2 · y) . Или в выражении x 3 + x 2 + 3 · x можно вынести за скобки общий множитель x , который обнаруживается после замены x 3 на x · x 2 . Такое преобразование возможно благодаря основным свойствам степени. В итоге мы получим выражение x · (x 2 + x + 3) .

Еще один случай, на котором следует остановиться отдельно, – это вынесение за скобки минуса. Тогда мы выносим не сам знак, а минус единицу. Например, преобразуем таким образом выражение − 5 − 12 · x + 4 · x · y . Перепишем выражение как (− 1) · 5 + (− 1) · 12 · x − (− 1) · 4 · x · y , чтобы общий множитель был виден более отчетливо. Вынесем его за скобки и получим − (5 + 12 · x − 4 · x · y) . На этом примере видно, что в скобках получилась та же сумма, но с противоположными знаками.

В выводах отметим, что преобразование путем вынесения общего множителя за скобки очень часто применяется на практике, например, для вычисления значения рациональных выражений. Также этот способ полезен, когда нужно представить выражение в виде произведения, например, разложить многочлен на отдельные множители.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Этот метод имеет смысл, если степень многочлена не ниже второй. При этом общим множителем может быть не только двучлен первой степени, но и более высоких степеней.

Чтобы найти общий множитель слагаемых многочлена, необходимо выполнить ряд преобразований. Простейший двучлен или одночлен, который можно вынести за скобки, будет одним из корней многочлена. Очевидно, что в случае, когда многочлен не имеет свободного члена, будет неизвестное в первой степени – многочлена, равный 0.

Более сложным для поиска общего множителя является случай, когда свободный член не равен нулю. Тогда применимы способы простого подбора или группировки. Например, пусть все корни многочлена рациональные, при этом все коэффициенты многочлена – целые числа:y^4 + 3·y³ – y² – 9·y – 18.

Выпишите все целочисленные делители свободного члена. Если у многочлена есть рациональные корни, то они находятся среди них. В результате подбора получаются корни 2 и -3. Значит, общими множителями этого многочлена будут двучлены (y - 2) и (y + 3).

Метод вынесения общего множителя является одним из составляющих разложения на множители. Описанный выше способ применим, если коэффициент при старшей степени равен 1. Если это не так, то сначала необходимо выполнить ряд преобразований. Например:2y³ + 19·y² + 41·y + 15.

Выполните замену вида t = 2³·y³. Для этого умножьте все коэффициенты многочлена на 4:2³·y³ + 19·2²·y² + 82·2·y + 60. После замены: t³ + 19·t² + 82·t + 60. Теперь для поиска общего множителя применим вышеописанный способ.

Кроме того, эффективным методом поиска общего множителя является элементов многочлена. Особенно он полезен, когда первый способ не , т.е. у многочлена нет рациональных корней. Однако группировки не всегда очевидной. Например:У многочлена y^4 + 4·y³ – y² – 8·y – 2 нет целых корней.

Воспользуйтесь группировкой:y^4 + 4·y³ – y² – 8·y – 2 = y^4 + 4·y³ – 2·y² + y² – 8·y – 2 = (y^4 – 2·y²) + (4·y³ – 8·y) + y² – 2 = (y² - 2)*(y² + 4·y + 1).Общий множитель элементов этого многочлена (y² - 2).

Умножение и деление, точно так же, как сложение и вычитание, являются основными арифметическими действиями. Не научившись решать примеры на умножение и деление, человек столкнется со множеством трудностей не только при изучении более сложных разделов математики, но даже и в самых обычных житейских делах. Умножение и деление тесно связаны между собой, и неизвестные компоненты примеров и задач на одно из этих действий вычисляются с помощью другого действия. При этом необходимо четко понимать, что при решении примеров абсолютно все равно, какие именно предметы вы делите или умножаете.

Вам понадобится

  • - таблица умножения;
  • - калькулятор или лист бумаги и карандаш.

Инструкция

Запишите нужный вам пример. Обозначьте неизвестный множитель как х. Пример может выглядеть, например, так: a*x=b. Вместо множителя а и произведения b в примере могут стоять любые или цифры. Вспомните основное умножения: от перемены мест множителей произведение не меняется. Так что неизвестный множитель х может стоять абсолютно в любом месте.

Для того чтобы найти неизвестный множитель в примере, где сомножителей всего два, необходимо просто разделить произведение на известный множитель . То есть делается это следующим образом: х=b/a. Если вам сложно оперировать абстрактными величинами, попробуйте представить эту задачу в виде конкретных предметов. Вы , у вас всего яблок и сколько их будет есть, но не знаете, по сколько яблок достанется каждому. Например, у вас 5 членов семьи, а яблок получилось 15. Количество яблок, предназначенное каждому, обозначьте как x. Тогда уравнение будет выглядеть так: 5(яблок)*х=15(яблок). Неизвестный множитель находится тем же самым способом, что и в уравнении с буквами, то есть 15 яблок разделите на пятерых членов семьи, в итоге получится, что каждый из них съел по 3 яблока.

Тем же самым способом находится неизвестный множитель при количестве сомножителей. Например, пример выглядит как a*b*c*x*=d. По идее, найти сомножитель можно и так же, как в более постом примере: x=d/a*b*c. Но можно привести уравнение и к более простому виду, обозначив произведение известных сомножителей -нибудь другой буквой - например, m. Найдите, чему равняется m, перемножив числа a,b и с: m=a*b*c. Тогда весь пример можно представить как m*x=d, а неизвестная величина будет равна x=d/m.

Если известный множитель и произведение представляют собой дроби, пример решается точно так же, как и с . Но в этом случае необходимо помнить действий . При умножении дробей числители и знаменатели их перемножаются. При делении дробей числитель делимого умножается на знаменатель делителя, а знаменатель делимого - на числитель делителя. То есть в этом случае пример будет выглядеть так: a/b*x=c/d. Для того чтобы найти неизвестную величину, нужно произведение разделить на известный множитель . То есть x=a/b:c/d =a*d/b*c.

Видео по теме

Обратите внимание

При решении примеров с дробями дробь известного сомножителя можно просто перевернуть и выполнять действие как умножение дробей.

Многочлен - это сумма одночленов. Одночлен же - это произведение нескольких сомножителей, которые являются числом или буквой. Степень неизвестной - это количество ее перемножений на саму себя.

Инструкция

Приведите , если этого еще не сделано. Подобные одночлены - это одночлены одинакового вида, то есть одночлены с одинаковыми неизвестными одинаковой степени.

Возьмите, например, многочлен 2*y²*x³+4*y*x+5*x²+3-y²*x³+6*y²*y²-6*y²*y². В этом многочлене две неизвестных - x и y.

Соедините подобные одночлены. Одночлены со второй степенью y и третьей степенью x придут к виду y²*x³, а одночлены с четвертой степенью y сократятся. Получится y²*x³+4*y*x+5*x²+3-y²*x³.

Примите за главную неизвестную букву y. Найдите максимальную степень при неизвестной y. Это одночлен y²*x³ и, соответственно, степень 2.

Сделайте вывод. Степень многочлена 2*y²*x³+4*y*x+5*x²+3-y²*x³+6*y²*y²-6*y²*y² по x равна трем, а по y равна двум.

Найдите степень многочлена √x+5*y по y. Она равна максимальной степени y, то есть единице.

Найдите степень многочлена √x+5*y по x. Неизвестная x находится , значит ее степень будет дробью. Так как корень квадратный, то степень x равна 1/2.

Сделайте вывод. Для многочлена √x+5*y степень по x равна 1/2, а степень по y равна 1.

Видео по теме

Упрощение алгебраических выражений требуется во многих разделах математики, в том числе при решении уравнений высших степеней, дифференцировании и интегрировании. При этом используется несколько методов, включая разложение на множители. Чтобы применить этот способ, нужно найти и вынести общий множитель за скобки .