Обратимая окислительно-восстановительная система. Окислительно-восстановительный потенциал Классификация окислительно-восстановительных систем

В формировании химических свойств почв окислительно-восстановительные процессы занимают одно из ведущих мест. Важнейшими факторами, определяющими окислительно-восстановительное состояние почвенных горизонтов, является кислород почвенного воздуха и почвенных растворов, окисные и закисные соединения железа, марганца, азота, серы, органическое вещество, микроорганизмы.

Реакции окисления и восстановления всегда протекают одновременно. Окисление одного вещества, участвующего в реакции, сопровождается восстановлением другого вещества.

Под окислительно-восстановительными процессами понимается процессы, в которые в качестве возможной стадии входит переход электронов от одной частицы вещества к другой. Окисление является реакцией, при которой происходит присоединение кислорода к веществу или потеря веществом водорода или электронов. Восстановление - это потеря веществом кислорода, присоединение к веществу водорода или электронов.

Способность почвы вступать в окислительно-восстановительные реакции измеряется с помощью окислительно-восстановительного потенциала (ОВП).

Окислительно-восстановительный потенциал по отношению к водороду называют Eh. Эта величина зависит от концентрации и соотношения окислителей и восстановителей, образующихся в процессе почвообразования. Благодаря существованию в почвенных горизонтах определенных окислительно-восстановительных систем, можно определить разность потенциалов (Eh) в милливольтах при помощи пары электродов, погруженных в почву. Величины Eh в различных типах почв и почвенных горизонтах изменяются в пределах 100-800 мв, иногда имеет и отрицательные значения. Величина Eh существенно зависят от кислотно-щелочных условий среды, растительности и микроорганизмов.

В почвенных условиях значительная часть участвующих в окислительно-восстановительных реакциях компонентов представлена твердыми фазами. В реакциях с участием твердых фаз почва будет проявлять высокую буферность до тех пор, пока эти компоненты не прореагируют. Буферность - это способность почвы противостоять изменению ОВП при любых внешних воздействиях. Это понятие характеризует устойчивость окислительно-восстановительных систем почвы в природных динамических условиях и ее можно назвать динамической буферностью. В природной обстановке с малыми скоростями реагируют гумусовые вещества, минералы гидроокислов железа.

Почвы содержат большой набор окислительно-восстановительных систем: Fe3+ - Fe2+, Mn2+ - Mn3+ - Mn4+, Cu+ - Cu2+, Co2+ - Co3+, NO3‾ - NO2‾ - NН3‾, S6‾ - S2‾.

Различают обратимые и необратимые окислительно-восстановительные системы. Обратимыми являются такие системы, которые в процессе изменения окислительно-восстановительного режима не меняют суммарный запас компонентов. Необратимые системы в процессе изменения окислительно-восстановительного режима утрачивают часть веществ. Эти вещества переходят в газообразное состояние или выпадают в осадок. Как правило, в почвах преобладают необратимые системы.

К обратимым окислительно-восстановительные системам относятся:

Система Fe3+ ⇆Fe2+. Эта система занимает особое место среди обра-тимых систем. Она чутко реагирует на малейшие изменения окислительно-восстановительной обстановки. Растворимость соединений трехвалентного железа крайне низкая. Миграция соединений железа возможна главным образом в форме соединений двухвалентного железа в условиях повышенной кислотности и пониженного Eh.

Система Mn2+ ⇆ Mn4+. Данная система является крайне чуткой к измене-нию ОВП. Соединения четырехвалентного марганца нерастворимы в условиях, характерных для почвенных горизонтов. Обменный марганец двухвалентен. Концентрация ионов двухвалентного марганца при повышении кислотности и понижении Eh возрастает в десятки тысяч раз. Миграция соединений марганца в ходе почвообразовательных процессов в вертикальном и горизонтальном направлениях сходна с миграцией соединений железа.

К необратимым окислительно-восстановительным системам относятся:

Система NO3 → NO2 → NО → N. Процесс нитрификации и накопления нитратов происходит в условиях окислительного режима и при высоких Eh 400-500 мв. Увлажнение почвы снижает Eh и способствует развитию процессов денитрификации.

Система сульфаты ⇆ сульфиды. Данная окислительно-восстановительная система играет большую роль во всех почвах, где присутствуют сернокислые соли. При участии микроорганизмов система сульфаты - сульфиды в присутствии органического вещества и недостатке кислорода сдвигается в сторону сульфидов. Происходит процесс восстановления сульфатов до сернистых металлов:

Na2SO4 + 2C = Na2S + CO2

Под действием присутствующей в почве углекислоты сернистые металлы легко разлагаются и образуют бикарбонаты и карбонаты щелочных и щелочно-земельных металлов. При этом происходит процесс восстановления сульфатов:

Na2S + H2CO3 = Na2CO3 + H2S

Однако в почвенном растворе содержание элементов с переменной валентностью достаточно мало. Поэтому почвенный раствор обладает невысокими ОВ-емкостью и буферностью, а величина Eh неустойчива.

Более существенное влияние на ОВ-процессы в почвах оказывает раство-ренный в почвенном растворе кислород, почвенная микрофлора и вода.

Почти все почвенные реакции происходят в водной среде, а сама вода мо-жет выступать и в качестве окислителя, и в качестве восстановителя.

По особенностям протекания окислительно-восстановительных процессов выделяется три ряда почв: 1) автоморфные почвы с преобладанием окислительной среды, 2) почвы с восстановительной глеевой обстановкой, 3) почвы с восстановительной сероводородной обстановкой.

С ОВ-процессами тесно связаны превращения растительных остатков, на-копление и состав образующихся органических веществ, и как следствие, формирование профиля почвы.

Окислительно-восстановительными называют реакции, сопровождающиеся изменением степени окисления атомов, входящих в состав реагирующих веществ. Под степенью окисления (п) понимают условный заряд атома, который вычисляют исходя из предположения, что молекула состоит только из ионов. Иными словами: степень окисления - это условный заряд, который приобрел бы атом элемента, если предположить, что они принял или отдал то или иное число электронов.

Окисление-восстановление - это единый, взаимосвязанный процесс. Окисление приводит к повышению степени окисления восстановителя, а восстановление - к ее понижению у окислителя.

Повышение или понижение степени окисления атомов отражается в электронных уравнениях: окислитель принимает электроны, а восстановитель их отдает. При этом не имеет значения, переходят ли электроны от одного атома к другому полностью и образуются ионные связи или электроны только оттягиваются к более электроотрицательному атому и возникает полярная связь. О способности того или иного вещества проявлять окислительные, восстановительные или двойственные (как окис­лительные, так и восстановительные) свойства можно судить по степени окисления атомов окислителя и восстановителя.

Атом того или иного элемента в своей высшей степени окисления не может ее повысить (отдать электроны) и проявляет только окислительные свойства, а в своей низшей степени окисления не может ее понизить (принять электроны) и проявляет только восстановительные свойства. Атом же элемента, имеющий промежуточную степень окисления, может проявлять как окислительные, так и восстановительные свойства. Например:

При окислительно-восстановительных реакциях валентность атомов может и не меняться. Например, в окислительно-восстановительной реакции Н° 2 +С1° 2 =Н + Сl - валентность атомов водорода и хлора до и после реакции равна единице. Изменилась их степень окисления. Валентность определяет число связей, образованных данным атомом, и поэтому знака заряда не имеет. Степень же окисления имеет знак плюс или минус.

Пример 1. Исходя из степени окисления (п) азота, серы и марганца в соединениях NH 3 , HNO 2 , HNO 3 , H 2 S, H 2 SO 3 , H 2 SO 4 , MnO 2 и KMnO 4 , определите, какие из них могут быть только восстановителями, только окислителями и какие проявляют как окислительные, так и восстановительные свойства.

Решение. Степень окисления азота в указанных соединениях соответственно равна: -3 (низшая), +3 (промежуточная), +5 (выс­шая); n(S) соответственно равна: -2 (низшая), +4 (промежуточная), +6 (высшая); n(Мn) соответственно равна: + 4 (промежуточная), +7 (высшая). Отсюда: NH 3 , H 2 S - только восстановители; HNO 3 , H 2 SO 4 , КМnОд - только окислители; HNO 2 , H 2 SO 3 , MnO 2 - окислители и восстановители.

Пример 2. Могут ли происходит окислительно-восста­новительные реакции между следующими веществами: a) H 2 S и HI; б) H 2 S и H 2 SO 3 ; в) H 2 SO 3 и НС1О 4 ?

Решение: а) степень окисления в H 2 S w(S) = -2; в HI и(1) = -1. Так как и сера, и иод находятся в своей низшей степени окис­ления, то оба вещества проявляют только восстановительные свойства и взаимодействовать друг с другом не могут;

б) в H 2 S n(S) = -2 (низшая), в H 2 SO 3 n(S) = +4 (промежуточная);

Следовательно, взаимодействие этих веществ возможно, при­чем H 2 SO 3 является окислителем;

в) в H 2 SO 3 n(S) = +4 (промежуточная); в НС1О 4 n(С1) = +7 (высшая). Взятые вещества могут взаимодействовать, H 2 SO 3 в этом случае будет проявлять восстановительные свойства.

Пример 3. Составьте уравнения окислительно-восстано­вительной реакции, идущей по схеме:

+7 +3 +2 +5

KMnO 4 +H 3 PO 3 +H 2 SO 4 →MnSO 4 + Н 3 РО 4 + K 2 SO 4 + Н 2 О

Решение. Если в условии задачи даны как исходные вещества, так и продукты их взаимодействия, то написание уравнения реакции сводится, как правило, к нахождению и расстановке коэффициентов. Коэффициенты определяют методом электрон­ного баланса с помощью электронных уравнений. Вычисляем, как изменяют степень окисления восстановитель и окислитель, и отражаем это в электронных уравнениях:

восстановитель 5 Р 3+ - 2е - = Р 5+ процесс окисления

окислитель 2 Мn 7+ + 5е - = Мn 2+ процесс восстановления

Общее число электронов, отданных восстановителем, должно быть равно числу электронов, которые присоединяет окислитель. Общее наименьшее кратное для отданных и принятых электронов десять. Разделив это число на 5, получаем коэффициент 2 для окислителя и продукта его восстановления, а при делении 10 на 2 получаем коэффициент 5 для восстановителя и продукта его окисления. Коэффициент перед веществами, атомы которых не меняют свою степень окисления, находят подбором. Уравнение реакции будет иметь вид:

2КМпО 4 + 5Н 3 РО 3 + 3H 2 SO 4 = 2MnSO 4 + 5Н 3 РО 4 + K 2 SO 4 + ЗН 2 О

Пример 4. Составьте уравнение реакции взаимодействия цинка с концентрированной серной кислотой, учитывая макси­мальное восстановление последней.

Решение . Цинк, как любой металл, проявляет только восстановительные свойства. В концентрированной серной кис­лоте окислительная функция принадлежит сере (+6). Макси­мальное восстановление серы означает, что она приобретает минимальную степень окисления. Минимальная степень окис­ления серы как p -элемента VIA-группы равна -2. Цинк как ме­талл IIВ-группы имеет постоянную степень окисления +2. Отра­жаем сказанное в электронных уравнениях:

восстановитель Zn - 2e - = Zn 2+ процесс окисления

окислитель S 6+ + 8е - = S 2- процесс восстановления

Составляем уравнение реакции:

4Zn + 5H 2 SO 4 = 4ZnSO 4 + H 2 S + 4H 2 O

Перед H 2 SO 4 стоит коэффициент 5, а не 1, ибо четыремолекулы H 2 SO 4 идут на связывание четырех ионов Zn 2+ .

Пример 5 . Определение направления окислительно‑восста­новительной реакции по величине окислительно‑вос­становительного потенциала. Возможно ли в качестве окислителя в кислой среде использовать K 2 Cr 2 O 7 в следующих процессах при стандартных условиях:

а) 2 F – –2 e – F = + 2,85 В;
б) 2 Cl – – 2 e – Cl 2 = + 1,36 В;
в) 2 Br – – 2 e – Br 2 = + 1,06 В;
г) 2 I – –2 e – I 2 = + 0,54 В.
Стандартный окислительно‑восстановительный потенциал системы: =1,33 В.

Решение: Для определения направления окислитель­но ‑ восстановительной реакции необходимо определить ЭДС:

ЭДС = окисл. – восстанов.

где окисл ‑ потенциал окислителя;

Восстанов ‑ потенциал восстановителя.

Реакция возможна, если ЭДС 0 . Для выяснения возможности протекания окислительно‑восстановительных реакций определяем ЭДС следующих систем:

а) F / 2F – II (Cr 2 O 7) 2– + 14 H + / 2 Cr 3+ + 7 H 2 O

ЭДС = 1,33 – 2,85 = –1,52 В;

б) Cl 2 / 2 Cl – II (Cr 2 O 7) –2 + 14 H + / 2 Cr 3+ + 7 H 2 O

ЭДС = 1,33 –1,36 = – 0,03 B;

в) Br 2 / 2 Br – II(Cr 2 O 7) 2– + 14 H + / 2 Cr 3+ + 7 H 2 O

ЭДС = 1,33 –1,06 = + 0,27 B;

г) I 2 / 2 I – II(Cr 2 O 7) 2– + 14 H + / 2 Cr 3+ + 7 H 2 O

ЭДС = 1,33 –0,54 = + 0,79 B.

Таким образом, дихромат калия K 2 Cr 2 O 7 может быть использован в качестве окислителя только для процессов:

2 Br – ‑ 2 e – Br

2 I – ‑ 2 e – I

Пример 6. Определение возможности протекания окисли­тельно-восстановительной реакции по величине изменения энергии Гиббса (изобарно-изотермического потенциала). В каком направлении будет протекать реакция?

2 NO 2 (г) + H 2 O (ж) = 2 HNO 3 (аq) + NO (г).

Если стандартные значения энергии Гиббса равны.

Различают три основных типа окислительно-восстановительных реакций:

1. Межмолекулярные (межмолекулярного окисления - восстановления).

К этому типу относятся наиболее многочисленные реакции, в которых атомы элемента окислителя и элемента восстановителя находятся в составе разных молекул веществ. Рассмотренные выше реакции относятся к этому типу.

2.Внутримолекулярные (внутримолекулярного окисления - восстановления).

К ним относятся реакции, в которых окислитель и восстановитель в виде атомов разных элементов находятся в составе одной и той же молекулы. По такому типу протекают реакции термического разложения соединений, например:

2KCIO 3 = 2KCI + 3O 2 .

3. Диспропорционирования (самоокисления - самовосстановления).

Это такие реакции, в которых окислителем и восстановителем является один и тот же элемент в одной и той же промежуточной степени окисления, которая в результате протекания реакции одновременно как снижается, так и повышается. Например:

3CI 0 2 + 6 KOH = 5 KCI + KCIO 3 + 3H 2 O,

3HCIO = HCIO 3 + 2HCI.

Окислительно-восстановительные реакции играют важную роль в природе и технике. В качестве примеров ОВР, протекающих в природных биологических системах, можно привести реакцию фотосинтеза у растений и процессы дыхания у животных и человека. Процессы горения топлива, протекающие в топках котлов тепловых электростанций и в двигателях внутреннего сгорания, являются примером ОВР.

ОВР используются при получении металлов, органических и неорганических соединений, проводят очистку различных веществ, природных и сточных вод.

9.5. Окислительно – восстановительные (электродные) потенциалы

Мерой окислительно – восстановительной способности веществ служат их электродные или окислительно – восстановительные потенциалы j ox / Red (редокс-потенциалы).1 Окислительно – восстановительный потенциал характеризует окислительно – восстановительную систему, состоящую из окисленной формы вещества (Ох), восстановленной формы (Red) и электронов. Принято записывать окислительно-восстановительные системы в виде обратимых реакций восстановления:

Ох + ne - D Red.

Механизм возникновения электродного потенциала . Механизм возникновения электродного или окислительно-восстановительного потенциала поясним на примере металла, погруженного в раствор, содержащий его ионы. Все металлы имеют кристаллическое строение. Кристаллическая решетка металла состоит из положительно заряженных ионов Me n + и свободных валентных электронов (электронный газ). В отсутствие водного раствора выход катионов металла из решетки металла невозможен, т.к. этот процесс требует больших энергетических затрат. При погружении металла в водный раствор соли, содержащей в своем составе катионы металла, полярные молекулы воды, соответственно ориентируясь у поверхности металла (электрода), взаимодействуют с поверхностными катионами металла (рис. 9.1).


В результате взаимодействия происходит окисление металла и его гидратированные ионы переходят в раствор, оставляя в металле электроны:

Ме (к) + m Н 2 Оокисление Ме n+ *m Н 2 О(р)+ nе-

Металл становится заряженным отрицательно, а раствор - положительно. Положительно заряженные ионы из раствора притягиваются к отрицательно заряженной поверхности металла (Ме). На границе металл - раствор возникает двойной электрический слой (рис.9.2). Разность потенциалов, возникающая между металлом и раствором, называется электродным потенциалом или окислительно - восстановительным потенциалом электрода φ Ме n + /Ме (φ Ox / Red в общем случае). Металл, погруженный в раствор собственной соли, является электродом (раздел 10.1). Условное обозначение металлического электрода Ме/Ме n + отражает участников электродного процесса.

По мере перехода ионов в раствор растет отрицательный заряд поверхности металла и положительный заряд раствора, что препятствует окислению (ионизации) металла.

Параллельно с процессом окисления протекает обратная реакция - восстановление ионов металла из раствора до атомов (осаждение металла) с потерей гидратной оболочки на поверхности металла:

Ме n+ * m Н 2 О(р) + nе- восстановление Ме(к) + m Н 2 О.

С увеличением разности потенциалов между электродом и раствором скорость прямой реакции падает, а обратной реакции растет. При некотором значении электродного потенциала скорость процесса окисления будет равна скорости процесса восстановления, устанавливается равновесие:

Ме n + * m Н 2 О (р) + nе - D Ме (к) + m Н 2 О.

Для упрощения гидратационную воду обычно в уравнение реакции не включают и оно записывается в виде

Ме n + (р) + nе - D Ме (к)

или в общем виде для любых других окислительно-восстановительных систем:

Ох + ne - D Red.

Потенциал, устанавливающийся в условиях равновесия электродной реакции, называется равновесным электродным потенциалом. В рассмотренном случае процесс ионизации в растворе термодинамически возможен, и поверхность металла заряжается отрицательно. Для некоторых металлов (менее активных) термодинамически более вероятным является процесс восстановления гидратированных ионов до металла, тогда их поверхность заряжается положительно, а слой прилегающего электролита - отрицательно.

Устройство водородного электрода. Абсолютные значения электродных потенциалов измерить нельзя, поэтому для характеристики электродных процессов пользуются их относительными значениями. Для этого находят разность потенциалов измеряемого электрода и электрода сравнения, потенциал которого условно принимают равным нулю. В качестве электрода сравнения часто применяется стандартный водородный электрод, относящийся к газовым электродам. В общем случае газовые электроды состоят из металлического проводника, контактирующего одновременно с газом и раствором, содержащим окисленную или восстановленную форму элемента, входящего в состав газа. Металлический проводник служит для подвода и отвода электронов и, кроме того, является катализатором электродной реакции. Металлический проводник не должен посылать в раствор собственные ионы. Удовлетворяют этим условиям платина и платиновые металлы.

Водородный электрод (рис. 9.3) представляет собой платиновую пластинку, покрытую тонким слоем рыхлой пористой пластины (для увеличения поверхности электрода) и опущенную в водный раствор серной кислоты с активностью (концентрацией) ионов Н + , равной единице.

Через раствор серной кислоты пропускают водород под атмосферным давлением. Платина (Pt) – инертный металл, который практически не взаимодействует с растворителем, растворами (не посылает свои ионы в раствор), но он способен адсорбировать молекулы, атомы, ионы других веществ. При контакте платины с молекулярным водородом происходит адсорбция водорода на платине. Адсорбированный водород, взаимодействуя с молекулами воды, переходит в раствор в виде ионов, оставляя в платине электроны. При этом платина заряжается отрицательно, а раствор – положительно. Возникает разность потенциалов между платиной и раствором. Наряду с переходом ионов в раствор идет обратный процесс – восстановление ионов Н + из раствора с образованием молекул водорода. Равновесие на водородном электроде можно представить уравнением

2Н + + 2е - D Н 2 .

Условное обозначение водородного электрода H 2 , Pt│H + . Потенциал водородного электрода в стандартных условиях (Т = 298 К, Р Н2 = 101,3 кПа, [Н + ]=1 моль/л, т.е. рН=0) принят условно равным нулю: j 0 2Н + / Н2 = 0 В.

Стандартные электродные потенциалы. Электродные потенциалы, измеренные по отношению к стандартному водородному электроду при стандартных условиях (Т=298К; для растворённых веществ концентрация (активность) С Red = С ох = 1 моль/л или для металлов С Ме n + = 1 моль/л, а для газообразных веществ Р=101,3 кПа), называют стандартными электродными потенциалами и обозначают j 0 О x / Red . Это справочные величины.

Окислительная способность веществ тем выше, чем больше алгебраическая величина их стандартного электродного (окислительно-восстановительного) потенциала. Напротив, чем меньше величина стандартного электродного потенциала реагирующего вещества, тем сильнее выражены его восстановительные свойства. Например, сравнение стандартных потенциалов систем

F 2 (г.) + 2e - D 2F(p.) j 0 = 2,87 В

H 2 (r.)+ 2e - D 2H (р.) j 0 = -2,25 В

показывает, что у молекул F 2 сильно выражена окислительная тенденция, а у ионов H- восстановительная.

Ряд напряжений металлов. Располагая металлы в ряд по мере возрастания алгебраической величины их стандартных электродных потенциалов, получают так называемый «Ряд стандартных электродных потенциалов» или «Ряд напряжений», или «Ряд активности металлов».

Положение металла в «Ряду стандартных электродных потенциалов» характеризует восстановительную способность атомов металла, а также окислительные свойства ионов металла в водных растворах при стандартных условиях. Чем меньше значение алгебраической величины стандартного электродного потенциала, тем большими восстановительными свойствами обладает данный металл в виде простого вещества, и тем слабее проявляют окислительные свойства его ионы и наоборот.

Например, литий (Li), имеющий самый низкий стандартный потенциал, относится к наиболее сильным восстановителям, а золото (Au), имеющее самое высокое значение стандартного потенциала, является очень слабым восстановителем и окисляется лишь при взаимодействии с очень сильными окислителями. Из данных «Ряда напряжений» видно, что ионы лития (Li +), калия (К +), кальция (Са 2+) и т.д. - самые слабые окислители, а к наиболее сильным окислителям принадлежат ионы ртути (Нg 2+), серебра (Аg +), палладия (Pd 2+), платины (Pt 2+), золота (Аu 3+ , Аu +).

Уравнение Нернста. Электродные потенциалы не являются неизменными. Они зависят от соотношения концентраций (активностей) окисленной и восстановленной форм вещества, от температуры, природы растворенного вещества и растворителя, рН среды и др. Эта зависимость описывается уравнением Нернста:

,

где j 0 О x / Red – стандартный электродный потенциал процесса; R – универсальная газовая постоянная; T – абсолютная температура; n - число электронов, участвующих в электродном процессе; а ох, а Red – активности (концентрации) окисленной и восстановленной форм вещества в электродной реакции; x и у – стехиометрические коэффициенты в уравнении электродной реакции; F- постоянная Фарадея.

Для случая, когда электроды металлические и устанавливающиеся на них равновесия описываются в общем виде

Ме n + + nе - D Ме,

уравнение Нернста можно упростить, приняв во внимание, что для твердых веществ активность постоянна и равна единице. Для 298 К, после подстановки а Ме =1 моль/л, x=y=1 и значений постоянных величин R=8,314 Дж/ К*моль; F = 96485 Кл / моль, заменяя активность а Ме n + на молярную концентрацию ионов металла в растворе С Ме n + и введя множитель 2,303 (переход к десятичным логарифмам), получим уравнение Нернста в виде

j Ме n + / Ме = j 0 Ме n + / Ме + lg С Ме n + .

Окислительно-восстановительный потенциал (синоним редокс-потенциал; от лат. reductio - восстановление и oxydatio - окисление) - потенциал, возникающий на инертном (обычно платиновом) электроде, погруженном в раствор, содержащий одну или несколько обратимых окислительно-восстановительных систем.

Обратимая окислительно-восстановительная система (редокс-система) представляет собой раствор, содержащий окисленную и восстановленную формы веществ, каждая из которых образуется из другой посредством обратимой окислительно-восстановительной реакции.

В состав простейших редокс-систем входят катионы одного и того же металла различной валентности, например

или анионы одного и того же состава, но разной валентности, например

В таких системах окислительно-восстановительный процесс осуществляется переносом электронов от восстановленной формы к окисленной. К таким редокс-системам относится ряд дыхательных ферментов, содержащих в своем составе гемин, например цитохромы. Окислительно-восстановительный потенциал таких систем может быть вычислен по формуле Петерса:

где е - окислительно-восстановительный потенциал в вольтах, Т - температура по абсолютной шкале, n - число электронов, теряемых одной молекулой или ионом восстановленной формы при переходе ее в окисленную форму; [Ох] и - молярные концентрации (точнее активности) окисленной и восстановленной форм соответственно; е0 - нормальный окислительно-восстановительный потенциал данной системы, равный ее окислительно-восстановительному потенциалу при условии, что =. Нормальные окислительно-восстановительные потенциалы многих редокс-систем можно найти в физико-химических и биохимических справочниках.

Во многих биологических системах окислительно-восстановительные реакции осуществляются посредством переноса от восстановленной формы к окисленной не только электронов, но и равного им числа протонов, например

Величина окислительно-восстановительного потенциала таких систем определяется не только отношением [Ох] : = и рН = 0;остальные величины имеют те же значения, что и в уравнении (1). Окислительно-восстановительный потенциал биологических систем, как правило, определяют при рН=7 и величину е0-1,984·10-4·Т·рН обозначают через e0. В этом случае уравнение (2) принимает вид:

Экспериментально окислительно-восстановительный потенциал определяют потенциометрически (см. Потенциометрия). Окислительно-восстановительный потенциал изолированных клеток и других биологических объектов часто измеряют колориметрически при помощи окислительно-восстановительных индикаторов (см.). Величина окислительно-восстановительного потенциала является мерой окислительной или восстановительной способности данной системы. Редокс-система, имеющая более высокий окислительно-восстановительный потенциал, окисляет систему с более низким окислительно-восстановительным потенциалом. Таким образом, зная величины окислительно-восстановительного потенциала биологических редокс-систем, можно определить направление и последовательность окислительно-восстановительных реакций в них. Знание окислительно-восстановительного потенциала дает возможность вычислять также количество энергии, которое освобождается на определенном этапе окислительных процессов, протекающих в биологических системах. См. также Окисление биологическое.

ЛЕКЦИЯ № 9

План лекции:

1. Окислительно-восстановительные системы, их характеристика.

2. Окислительно-восстановительные потенциалы, их экспериментальное измерение. Стандартный окислительно-восстановительный потенциал как мера силы

окислителя и восстановителя.

3. Применение стандартных окислительно-восстановительных потенциалов для определения продуктов, направления и последовательности протекания окислительно-восстановительных реакций.

4. Реальные окислительно-восстановительные потенциалы. Уравнение Нернста.

Окислительно-восстановительные системы, их характеристика.

Многие реакции, представляющие интерес для аналитической химии, являются окислительно-восстановительными и используются как в качественном, так и в количественном анализе.

Окислительно-восстановительными реакциями (ОВР) называют реакции с изменением степени окисления реагирующих веществ. При этом изменение степени окисления происходит с присоединением и с отдачей электронов.

Процессы присоединения и отдачи электронов рассматривают как полуреакции восстановления и окисления соответственно:

aОк1 + ne cВос1 (восстановление) bВос2 – ne dОк2 (окисление) В каждой полуреакции вещество в более высокой степени окисления называют окисленной формой (Ок), а в более низкой степени окисления – восстановленной формой (Вос).

Окисленная и восстановленная формы вещества представляют сопряженную окислительно-восстановительную пару (редокс-пару). В окислительно-восстановительной паре окисленная форма (Ок) является акцептором электронов и восстанавливается, восстановленная форма (Вос) выступает в роли донора электронов и окисляется.

Полуреакции окисления и восстановления неосуществимы одна от другой – если есть донор электронов, то должен быть и акцептор. Реально протекает суммарная окислительно-восстановительная реакция:

aОк1 + bВос2 cВос1 + dОк При этом число отдаваемых и принимаемых электронов должно быть одним и тем же.

Например, рассмотрим окислительно-восстановительную реакцию:

2Fe3+ + Sn2+ 2Fe2+ + Sn4+ Соответствующие полуреакции можно написать в виде:

2Fe3+ + 2e 2Fe2+ Sn2+ – 2e Sn4+ В данной окислительно-восстановительной реакции участвуют два электрона и имеются две окислительно-восстановительные пары Fe3+/Fe2+ и Sn4+/Sn2+, каждая из которых содержит окисленную (Fe3+, Sn4+) и восстановленную (Fe2+, Sn2+) формы.

Окислительно-восстановительные потенциалы, их экспериментальное измерение. Стандартный окислительно-восстановительный потенциал как мера силы окислителя и восстановителя.

Эффективность окислительных или восстановительных свойств данного вещества (способность отдавать или принимать электроны) зависит от его природы, условий протекания окислительно-восстановительной реакции и определяется величиной окислительновосстановительного потенциала (ОВП) полуреакции (редокс-пары). Этот потенциал экспериментально измеряют с помощью окислительно-восстановительного электрода, состоящего из инертного материала М (платина, золото, графит, стеклоуглерод), погруженного в водный раствор, в котором имеются окисленная и восстановленная формы данного вещества. Обозначается такой электрод следующим образом:

М | Ок, Вос На поверхности такого обратимо работающего электрода протекает реакция:

Ок + ne Вос в результате которой возникает потенциал, равный окислительно-восстановительному потенциалу исследуемой окислительно-восстановительной пары.

Например, если платиновый электрод погрузить в раствор, содержащий хлориды железа(III) (окисленная форма) и железа(II) (восстановленная форма) (Pt | FeCl3, FeCl2), то на его поверхности протекает окислительно-восстановительная реакция Fe3+ + e Fe2+ и возникает электродный потенциал, равный окислительно-восстановительному потенциалу редокс-пары Fe3+/Fe2+.

Измерить абсолютное значение окислительно-восстановительного потенциала не представляется возможным, поэтому на практике значение ОВП исследуемой редокспары измеряют относительно какой-либо стандартной полуреакции сравнения и электрода, созданного на е основе (электрода сравнения). Стандартная полуреакция должна быть обратимой, а электрод сравнения должен обладать постоянным и воспроизводимым потенциалом и иметь достаточно простую конструкцию.

В качестве универсального электрода сравнения для измерения ОВП принят стандартный водородный электрод (СВЭ), который состоит из платиновой пластинки, покрыСтандартный водородный электрод (СВЭ) той слоем мелкодисперсной платины (платиновой черни), и погруженной в раствор соляной (или серной) кислоты с Pt(H2) (p =1 атм) | HCl,водорода,моль/л || единице – аН+ = 1:

активностью ионов a(H+) = 1 равной H2 (газ) платиновая пластина, молекулы водорода, покрытая мелкодисперсной адсорбированные на платиной платиновой пластине HCl (платиновая чернь) Pt Н 2Н+ + 2е Платина омывается потоком газообразного водорода под давлением 1 атм (101,3 кПа), Стандартные условия: t = 250C (298 K), p(H2) = 1 атм (101,3 кПа), который сорбируется на пористой поверхности платиновой черни. Обозначается станa(H+) = 1 моль/л ЕСВЭ = E2H /H = дартный водородный электрод следующим образом: + Pt(H2) (p = 1 атм) | HCl (aH+ = 1) На поверхности такого обратимо работающего электрода протекает полуреакция:

потенциал которой условно принят нулю при любой температуре, то есть потенциал стандартного водородного электрода ЕСВЭ = 0.



Следует отметить, что стандартный водородный электрод не является окислительно-восстановительным электродом, асобирают гальванический элемент, Для измерения ОВП относится к так называемым электродам первого рода, потенциал составленный из СВЭактивности соответствующих катионов – в данном которых зависит от и исследуемой ОВ пары (полуреакции).

случае от активности катионов водорода.

Для измерения ОВП полуреакции нужно составить гальванический элемент из станОВП редокс-пары (полуреакции) – это ЭДС гальванического дартного водородного электрода и электрода, на котором протекает исследуемая полуреэлемента, составленного из данной ОВ полкреакции и СВЭ.

При этом схема записи гальванического элемента выглядит следующим образом:

В этой схеме вертикальная черта (|) означает скачок потенциала на границе раздела фаз «электрод – раствор», а двойная вертикальная черта (||) – устранение диффузионного потенциала с помощью солевого мостика.

Электродвижущая сила (ЭДС) данной гальванической цепи, то есть разность потенциалов исследуемой полуреакции и стандартного водородного электрода, равна окислительно-восстановительному потенциалу исследуемой редокс-пары:

Если потенциал исследуемой окислительно-восстановительной пары измерен в стандартных условиях – температура 250С (298 K), давление 1 атм (101,3 кПа) и активности окисленной и восстановленной форм равны единице (аОк = аВос = 1 моль/л), то его называют стандартным окислительно-восстановительным потенциалом и обозначают Е0Ок/Вос.

Стандартные ОВП множества окислительно-восстановительных пар измерены и их значения в вольтах приведены в таблицах, например:

Чем больше Е0Ок/Вос, тем более сильным окислителем является окисленная форма и более слабым восстановителем восстановленная форма. И, наоборот, чем меньше Е0Ок/Вос, тем более сильным восстановителем является восстановленная форма и более слабым окислителем окисленная форма.

Из приведенных в таблице данных видно, что наибольшими окислительными свойствами обладает молекулярный фтор, а наибольшими восстановительными – металлический магний. При этом ионы фтора и магния практически не обладают восстановительными и окислительными свойствами соответственно.

Положительный знак потенциала указывает на самопроизвольное протекание реакции восстановления в паре со СВЭ, отрицательный – на самопроизвольное протекание реакции окисления. Так, потенциалы сильных окислителей всегда положительны, а сильных восстановителей – отрицательны. Соглашение о знаках было принято в 1953 г. на конгрессе Международного союза теоретической и прикладной химии (ИЮПАК).

Применение стандартных окислительно-восстановительных потенциалов для определения продуктов, направления и последовательности протекания окислительно-восстановительных реакций.

Из термодинамической теории электродвижущих сил и электродных потенциалов известно, что стандартный потенциал реакции Е0 (стандартная ЭДС реакции), который равен разности стандартных ОВП участвующих в реакции редокс-пар (полуреакций), связан со стандартным изменением энергии Гиббса G0 реакции уравнением:

где: n – число электронов, участвующих в окислительно-восстановительной реакции F – число Фарадея, 96500 Кл/моль Из термодинамики равновесных процессов известно также, что если изменение энергии Гиббса при любой химической реакции меньше нуля, то эта реакция самопроизвольно протекает в прямом направлении в соответствии с записью уравнения реакции; если больше нуля – в обратном направлении.

Отсюда нетрудно видеть, что при положительной разности стандартных ОВП редокс-пар (полуреакций), участвующих в какой-либо окислительно-восстановительной реакции aОк1 + bВос2 cВос1 + dОк2, изменение стандартной энергии Гиббса меньше нуля и реакция в стандартных условиях протекает в прямом направлении:

В случае отрицательной разности стандартных ОВП редокс-пар (полуреакций), участвующих в окислительно-восстановительной реакции, изменение стандартной энергии Гиббса больше нуля и реакция в стандартных условиях в прямом направлении не идт, а протекает в обратном направлении:

Иными словами, окислительно-восстановительная реакция протекает в направлении от более сильных окислителя и восстановителя к более слабым. При этом реакция идт до установления состояния равновесия.

Например, можно ли окислить ионы железа(II) солью четырехвалентного олова?

Предполагаемая реакция окисления протекает по уравнению:

Стандартные ОВП редокс-пар равны: ESn4+/Sn2+ +0,15 B, EFe3+/Fe2+ +0,77 B. Тогда, согласно изложенному выше Е0 = 0,15 – 0,77 = -0,62 В 0). Это означает, что реакция в стандартных условиях в прямом направлении не идет, то есть окислить ионы железа(II) ионами четырехвалентного олова невозможно. Напротив, реакция протекает в обратном направлении и возможно окисление ионов олова(II) ионами железа():

В этом случае стандартный потенциал реакции положителен Е0 = 0,77 – 0,15 = 0,62 В > 0, а изменение стандартной энергии Гиббса меньше нуля (G0

Таким образом, в соответствии со стандартными окислительно-восстановительными потенциалами реакция идет в направлении от более сильных окислителя и восстановителя (Fe3+ и Sn2+) к более слабым (Fe2+ и Sn4+).

Используя стандартные окислительно-восстановительные потенциалы можно определять не только направление, но и последовательность протекания окислительновосстановительных реакций. В случае нескольких ОВР в первую очередь идет та, стандартный потенциал которой Е0 наибольший.

Например, при действии хлорной воды на раствор, содержащий иодид- и бромидионы возможно протекание реакций:

Стандартные ОВП редокс-пар, участвующих в реакциях, равны:

В данном случае сильный окислитель Cl2 (большой стандартный ОВП) в первую очередь будет взаимодействовать с наиболее сильным восстановителем иодид-ионом (наименьший стандартный ОВП), а затем с бромид-ионом. На это указывает бльшее значение стандартного потенциала реакции хлора с иодидом (Е0 = 1,36 – 0,54 = 0,82 В), чем с бромидом (Е0 = 1,36 – 1,08 = 0,28 В).

С помощью стандартных ОВП можно также определять продукты окислительновостановительных реакций.

Например, при взаимодействии хлорида олова(IV) с металлическим железом возможно восстановление олова до Sn2+ или Sn0 и окисление железа до Fe2+ или Fe3+. При этом:

Из приведенных значений стандартных ОВП видно, что бльшие окислительные свойства ион Sn4+ проявляет при восстановлении до Sn2+, а металлическое железо является более сильным восстановителем при окислении до иона Fe2+. Поэтому исследуемая реакция протекает по уравнению:

Этой реакции отвечает и набольшее значение стандартного потенциала равное:

Таким образом, продуктами реакции между хлоридом олова(IV) и металлическим железом являются хлориды олова(II) и железа(II):

Реальные окислительно-восстановительные потенциалы. Уравнение Нернста.

Ситуация, когда все участники окислительно-восстановительной реакции одновременно находятся в стандартных состояниях (их активности, концентрации и коэффициенты активности равны единице), часто практически нереализуема и е следует рассматривать как гипотетическую.

Окислительно-восстановительная реакция, протекающая в реальных условиях, характеризуется работой А, которая затрачивается на электрохимическое превращения одного моля вещества:

где: n – число электронов, участвующих в окислительно-восстановительной реакции F – число Фарадея, 96500 Кл/моль Для самопроизвольной реакции aОк1 + bВос2 cВос1 + dОк2 эта работа есть энергия Гиббса:

Зная, что разделив на nF, поменяв знаки и подставив выражение для K0 получаем:

При активностях всех компонентов, равных единице, Е = Е0, то есть потенциал реакции равен е стандартному потенциалу.

Потенциал любой окислительно-восстановительной реакции (реальный Е или стандартный Е0) равен разности соответствующих окислительно-восстановительных потенциалов полуреакций е составляющих, тогда:

Если при этом второй полуреакцией является протекающая в стандартных условиях полуреакция 2Н+ + 2е Н2 (aH+ = 1, p = 1 атм), для которой E2H+ /H E2H+ /H 0, то потенциал реакции будет равен потенциалу первой полуреакции:

Тогда выражение для окислительно-восстановительного потенциала любой полуреакции аОк + ne сВос имеет вид:

где: ЕОк/Вос – реальный окислительно-восстановительный потенциал полуреакции Е0Ок/Вос – стандартный окислительно-восстановительный потенциал полуреакции R – универсальная (молярная) газовая постоянная, 8,314 Дж/мольK Т – абсолютная температура, K n – число электронов, участвующих в окислительно-восстановительной реакции F – число Фарадея, 96500 Кл/моль Это выражение называют уравнением Нернста. Часто постоянные величины в уравнении Нернста объединяют в одну константу, а натуральный логарифм заменяют десятичным (ln = 2,3lg). Тогда при 250С (298 K):

Из уравнения Нернста следует, что стандартный ОВП равен реальному окислительновосстановительному потенциалу полуреакции (редокс-пары) при активностях всех участвующих в равновесии частиц, равных единице:

Например, для полуреакции:

Стандартный окислительно-восстановительный потенциал зависит только от температуры, давления и природы растворителя.

На практике удобнее пользоваться концентрациями, а не активностями. В этом случае уравнение Нернста можно переписать, используя общие концентрации окисленной (cОк) и восстановленной форм (сВос). Поскольку a = c (где – коэффициент активности, - коэффициент конкурирующей реакции), то уравнение Нернста приобретает вид:

где: EОк/Вос – формальный окислительно-восстановительный потенциал полуреакции Формальный ОВП равен реальному окислительно-восстановительному потенциалу при общих концентрациях окисленной и восстановленной форм, равных 1 моль/л, и заданных концентрациях всех других веществ, присутствующих в системе:

Например, для полуреакции:

Таким образом, формальный окислительно-восстановительный потенциал, в отличие от стандартного, зависит не только от температуры, давления и природы растворителя, но и от ионной силы, протекания конкурирующих реакций и концентрации частиц, не являющихся окисленной либо восстановленной формами, но принимающих участие в полуреакции (в данном примере Н+).

При расчетах окислительно-востановительных потенциалов влиянием ионной силы часто пренебрегают, принимая отношение коэффициентов активности равным единице, и вместо активностей в уравнении Нернста используют равновесные концентрации ([Ок] = Ок cОк; [Вос] = Вос сВос). Тогда:

Все последующие примеры записаны и рассчитаны с использованием этого допущения.

При написании уравнения Нернста для какой-либо окислительно-восстановительной полуреакции следует придерживаться определенного порядка и правил:

Правильно записать окислительно-восстановительную полуреакцию с соблюдением стехиометрических коэффициентов и определить число электронов, участвующих в ней;

- определить окисленную и восстановленную форму;

Определить компоненты в стандартном состоянии (твердые формы, малорастворимые газы с р = 1 атм, молекулы растворителя) и исключить их из написания уравнения Нернста, так как их активности равны единице;

- записать уравнение Нернста с учетом стехиометрических коэффициентов и сопутствующих ионов.

Например, написать уравнения Нернста для следующих редокс-пар:

а) Cr2O72-/Cr3+ (в кислой среде) - напишем полуреакцию: Сr2O72- + 14H+ + 6e 2Cr3+ + H2O (n = 6) - в этой полуреакции Сr2O72- - окисленная форма, Cr3+ - восстановленная форма - Н2О (растворитель) в стандартном состоянии (а = 1) - запишем уравнение Нернста с учетом стехиометрических коэффициентов и сопутствующих ионов Н+:

б) AgCl/Ag - в этой полуреакции AgCl - окисленная форма, Ag - восстановленная форма - AgCl и Ag0 в твердой форме, то есть в стандартном состоянии (а = 1) - запишем уравнение Нернста с учетом стехиометрических коэффициентов и сопутствующих ионов Cl-:

в) О2/Н2О2 (в кислой среде) - в этой полуреакции O2 - окисленная форма, Н2О2 - восстановленная форма - газообразный О2 в стандартном состоянии (а = 1) - запишем уравнение Нернста с учетом стехиометрических коэффициентов и сопутствующих ионов Н+:

г) О2/Н2О2 (в щелочной среде) - напишем полуреакцию: О2 + 2Н2О + 2e H2O2 + 2ОН- (n = 2) - в этой полуреакции O2 - окисленная форма, Н2О2 - восстановленная форма - газообразный О2 и Н2О (растворитель) в стандартном состоянии (а = 1) - запишем уравнение Нернста с учетом стехиометрических коэффициентов и сопутствующих ионов ОН-:

д) SO42-/SO32- (в щелочной среде) - напишем полуреакцию: SO42- + H2O + 2e SO32- + 2OH- (n = 2) - в этой полуреакции SO42- - окисленная форма, SO32- - восстановленная форма - Н2О (растворитель) в стандартном состоянии (а = 1) - запишем уравнение Нернста с учетом стехиометрических коэффициентов и сопутствующих ионов ОН-:

Похожие работы:

«1 Тема 1. ВВЕДЕНИЕ В ЛОГИСТИКУ. Лекция 1.3. Методологический аппарат логистики. План: 1. Как строится логистическая система компании. Логистическая миссия. Логистическая стратегия. 2. Логистические концепции. Логистические технологии. Requirements/ resource planning, концепция Just-in-time, Lean production, Supply Chain Management и др. Базовые (стандартные) логистические подсистемы/ модули. 3. Общие научные методы, применяемые для решения логистических задач. Системный анализ. Моделирование....»

«РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ В.И. Юдович Лекции по курсу Математические модели естественных наук Ростов-на-Дону 2006 Оглавление 1 Математические модели 8 1.1 Динамические системы................................... 8 1.2 Динамические системы и автономные дифференциальные уравнения........................................... 11 1.3 О глобальной разрешимости задачи Коши и единственности решения...........»

«Д. А. Паршин, Г. Г. Зегря Физика Колебания Лекция 14 ЛЕКЦИЯ 14 Вынужденные колебания. Биения. Затухающие колебания. Добротность. Вынужденные колебания при наличии трения. Принцип суперпозиции колебаний. Вынужденные колебания Перейдем теперь к рассмотрению колебаний в системе, на которую действует переменная во времени внешняя сила F (t). Такие колебания называют вынужденными, в отличие от свободных колебаний, рассмотренных ранее. Уравнение вынужденных колебаний имеет вид m + kx = F (t), x (1)...»

«СПЕЦКУРС ЭКОНОМИКА ФАРМАЦЕВТИЧЕСКОГО ПРЕДПРИЯТИЯ для студентов 5-го курса по специальности Химия (фармацевтическая деятельность) (разработчик – профессор кафедры радиационной химии и химико-фармацевтических технологий химического факультета БГУ В.Ф.Гореньков. РАЗДЕЛ I. ЛЕКЦИОННЫЙ КУРС ЛЕКЦИЯ 1. СОЗДАНИЕ ОРГАНИЗАЦИИ, ПРЕДПРИЯТИЯ, ЕГО РЕГИСТРАЦИЯ, ИМУЩЕСТВО, ВИДЫ ДЕЯТЕЛЬНОСТИ 1.1. Закон РБ О предприятиях. 1.2. Предприятие, его главные задачи. 1.3. Виды хозяйственной деятельности. 1.4. Виды...»

«1 ЛЕКЦИЯ №24 ФИЗИКА АТОМНОГО ЯДРА Состав атомных ядер, их классификация Э. Резерфорд, исследуя прохождение -частиц с энергией в несколько мегаэлектронвольт через тонкие пленки золота, пришел к выводу о том, что атом состоит из положительно заряженного ядра и сгружающих его электронов. Проанализировав эти опыты, Резерфорд также показал, что атомные ядра имеют размеры около 10-14–10-15 м (линейные размеры атома примерно 10-10 м). Атомное ядро состоит из элементарных частиц - протонов и нейтронов...»

«Лекция 5. Стратегия развития информационных технологий на предприятии Понятие, сущность и роль ИТ-стратегии в деятельности предприятия. 1. С точки зрения современного менеджмента под стратегией понимается управленческий план, направленный на укрепление позиций организации, удовлетворение потребностей ее клиентов и достижение определенных результатов деятельности. Иными словами, стратегия организации призвана ответить на вопрос, каким образом переместить эту компанию из текущего состояния в...»

«Цена Кокосового Ореха Рассказ О.Л. Кинга Цена Кокосового Ореха Рассказ О.Л. Кинга Миссионерская Проповедь 1890-х Предисловие к Переизданию Маленькая книга Цена Кокосового Ореха попала мне в руки несколько лет назад. Эта книга сразу же нашла уютное местечко в моем сердце и стала темой моих размышлений. Всегда осознавая значение незначимого на первый взгляд, я понимал, что это маленькое свидетельство возвещает эту истину. Эта правдивая история рассказывает о великой способности нашего Бога брать...»

«ЛЕКЦИИ ПО ИСТОРИИ РУССКОЙ ЛИТЕРАТУРЫ ХІХ века (ІІ пол.) УДК 811.161.0(091) ББК 83.3(2Рос=Рус)1я7 Р 89 Рекомендовано к изданию Ученым советом филологического факультета БГУ (протокол № 1 от 20. 10. 2004) А в т о р ы: Н. Л. Блищ (И. А. Гончаров, Проза А. П. Чехова); С.А. Позняк (Новаторство драматургии А. П. Чехова, А. Н. Островский) Р е ц е н з е н т ы: кандидат филологических наук, доцент - А. В. Иванов; кандидат филологических наук, доцент - Н. А. Булацкая Русская литература ХIХ века (II...»

«ИНФОРМАТИКА (семестр 1) Лекция 1. Информатика как наука 1. Понятие информатики как науки и учебной дисциплины. 2. Основные направления информатики. 1. Понятие информатики как науки и учебной дисциплины Предметом курса Информатика и математика являются информационные отношения, складывающиеся в процессе деятельности по сбору, переработке, передаче, хранению и выдаче информации. Изучение данного курса обеспечивает базовую подготовку в сфере информатики, вычислительной техники, математики и...»

«ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И ФИНАНСОВ А.Г. СТОВПОВОЙ УГОЛОВНЫЙ ПРОЦЕСС КУРС ЛЕКЦИЙ Часть 1 2 издание, исправленное и дополненное ИЗДАТЕЛЬСТВО САНКТ-ПЕТЕРБУРГСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ЭКОНОМИКИ И ФИНАНСОВ 2010 ББК 67. С Стовповой А.Г. Уголовный процесс: Курс лекций. Часть 1. 2 изд., испр. и доп.– СПб.: Изд-во СПбГУЭФ, 2010.– 258 с. Второе...»

« изучения и публикации творческого наследия В.Э.Мейерхольда. В круг его научных интересов входит история русского режиссёрского искусства первой половины ХХ века и пластический театр всех времён и народов. В режиссёрской Магистратуре ЦИМа читает курсы Сценоведение и Творческий путь В.Э.Мейерхольда. Постоянно курит на лекциях, любит смешить...»

«Элиас Отис ШКОЛА СИТХОВ Материалы переписки и форума в рамках Академии Силы Том 2. Открытая переписка Первая часть материалов Академии Ситхов представляет собой лекции, скомпилированные из фрагментов переписки и общения на форуме Академии Силы, вторая - открытые письма Ученикам. Материалы открытых писем, вошедшие в лекции, как правило, из второй части удалены. 2 Содержание 1. Иноку 30. Самураю 2. Ратибору 31. Факиру 3. Самураю 32. Самураю 4. Самураю 33. Иноку 5. Самураю 34. Самураю 6. Самураю...»

«Д. А. Паршин, Г. Г. Зегря Физика Принцип наименьшего действия Лекция 28 ЛЕКЦИЯ 28 Функционалы. Вариационное исчисление. Принцип наименьшего действия. Принцип наименьшего действия и квантовая механика. Функционалы Наряду с задачами, в которых необходимо определить максимальные и минимальные значения некоторой функции y = f (x), в задачах физики нередко возникает необходимость найти максимальные или минимальные значения величин особого рода, называемых функционалами. Функционалами называются...»

«ХИМИЯ Лекция 01 ХИМИЧЕСКИЕ СИСТЕМЫ. СТРОЕНИЕ АТОМА. Е.А. Ананьева, к.х.н., доцент, кафедра Общая Химия НИЯУ МИФИ Химия и Основные направления подготовки специалистов НИЯУ МИФИ Физика материалов и процессов Ядерная физика и космофизика Ядерная медицина Физика элементарных частиц и космология Физика плазмы Лазерная физика Физика твердого тела и фотоника Физика быстропротекающих процессов Химические системы совокупность микро- и макроколичеств веществ, способных под воздействием внешних факторов к...»

« КОНСТРУКЦИИ ВОДНЫЕ ПУТИ И ПОРТЫ КОНСПЕКТ ЛЕКЦИЙ ТАШКЕНТ – 2013 Конспект лекций рассмотрен и рекомендован к опубликованию Научнометодическим Советом ТИИМ (протокол №9 от 02.07 2013 г.) В конспекте лекций изложены общие сведения о водных путях, о типах судов, способах улучшения судоходных условий и схемы искусственных водных путей. Описаны...»

«Тема 1. КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ЭКОЛОГИЧЕСКОЙ НАУКИ Лекция 1.1. Зарождение экологических взглядов в науке Лекция 1.2. Обобщение материалов экологии в трудах ученых Лекция 1.3. Обособление науки экологии в отдельную область знаний Лекция 1.4. Современное состояние науки экологии Лекция 1.1. Зарождение экологических взглядов в науке Экология как наука о взаимоотношениях организма и среды могла возникнуть лишь на определенном этапе развития биологических знаний. Ее становление, как никакой...»

«Версия от 16 января 2010 г. Краткое содержание курса “Алгебра” (1-й семестр, 3-й поток) (лектор Марков В.Т.) Предисловие Этот текст не претендует ни на полноту изложения, ни на литературные достоинства основной целью автора была краткость. В большинстве случаев приводятся только наброски доказательств (начало и конец доказательства отмечаются знаками и, соответственно). Восстановление всех деталей всех доказательств обязательное условие усвоения курса и хороший способ самостоятельной проверки...»

«1 ТЕХНОЛОГИЧЕСКАЯ КАРТА ЛЕКЦИИ №1 по клинической иммунологии для студентов 4 курса медико-биологического факультета ВолгГМУ в 2012/13 уч.г. Тема: Введение в клиническую иммунологию. Основные формы иммунопатологии. Оценка иммунного статуса человека 1. План: 1. Фило- и онтгенез иммунной системы человека. 2.1. Предмет и задачи клинической иммунологии. 2.2.Основные формы иммунопатологии человека. 2.2.1. Иммунодефицитные состояния. 2.2.2.Аллергические и аутоиммунные реакции. 2.2.3....»

«Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Владимирский государственный университет Е.Г. Ерлыгина Н.В. Капустина Н.М. Филимонова КУРС ЛЕКЦИЙ ПО ДИСЦИПЛИНЕ МЕЖДУНАРОДНЫЙ МЕНЕДЖМЕНТ Владимир 2008 УДК 338.24.(075.8) ББК 65.291.21я73 К94 Рецензенты: Доктор экономических наук, профессор, зав. кафедрой управления и планирования социально-экономических процессов Санкт-Петербургского государственного университета Ю.В. Кузнецов...»

«История религий. Лекция 20 Язычество народов Европы Духи рек, озер, омутов, водоворотов – они тоже разные и бывают людям вполне враждебными, как водяные. Но, конечно, с духами хаоса и разрушения, как в греческой традиции, ни в какое сравнение не идут. Вот изображение кельтской священнослужительницы – друидши. Хотя есть люди, которые говорят, что друидами могли быть только мужчины. Другие говорят, нет, друидками могли быть и женщины. Не знаю. О друидах очень мало нам известно. Хотя образованные...»