Рождение вселенной. В.Казютинский. Инфляционная космология: теория и научная картина мира

Один из фрагментов первой микросекунды жизни вселенной сыграл огромную роль в ее дальнейшей эволюции.

Потеря связи Реликтовое излучение, которое мы сейчас видим с Земли, приходит с расстояния 46 млрд световых лет (по сопутствующей шкале), пропутешествовав чуть менее 14 млрд лет. Однако когда это излучение начало свое странствие, возраст Вселенной насчитывал всего лишь 300 000 лет. За это время свет мог пройти путь, соответственно, лишь в 300 000 световых лет (маленькие окружности), и две точки на иллюстрации просто не смогли бы связаться друг с другом - их космологические горизонты не пересекаются.

Концептуальный прорыв стал возможным благодаря очень красивой гипотезе, родившейся в попытках найти выход из трех серьезных неувязок теории Большого взрыва — проблемы плоской Вселенной, проблемы горизонта и проблемы магнитных монополей.

Редкая частица

С середины 1970-х годов физики начали работать над теоретическими моделями Великого объединения трех фундаментальных взаимодействий — сильного, слабого и электромагнитного. Многие из этих моделей приводили к заключению, что вскоре после Большого взрыва должны были в изобилии рождаться очень массивные частицы, несущие одиночный магнитный заряд. Когда возраст Вселенной достиг 10 -36 секунды (по некоторым оценкам, даже несколько раньше), сильное взаимодействие отделилось от электрослабого и обрело самостоятельность. При этом в вакууме образовались точечные топологические дефекты с массой в 10 15 -10 16 большей, чем масса тогда еще не существовавшего протона. Когда, в свою очередь, электрослабое взаимодействие разделилось на слабое и электромагнитное и появился настоящий электромагнетизм, эти дефекты обрели магнитные заряды и начали новую жизнь — в виде магнитных монополей.


Реликтовое излучение, которое мы сейчас видим с Земли, приходит с расстояния 46 млрд. световых лет (по сопутствующей шкале), пропутешествовав чуть менее 14 млрд лет. Однако когда это излучение начало свое путешествие, возраст Вселенной насчитывал всего лишь 300 000 лет. За это время свет мог пройти, соответственно, лишь 300 000 световых лет (маленькие окружности), и две точки на иллюстрации просто не смогли бы связаться друг с другом — их космологические горизонты не пересекаются.

Эта красивая модель поставила космологию перед малоприятной проблемой. «Северные» магнитные монополи аннигилируют при столкновении с «южными», но в остальном эти частицы стабильны. Из-за огромной по меркам микромира массы нанограммового масштаба вскоре после рождения они были обязаны замедлиться до нерелятивистских скоростей, рассеяться по пространству и сохраниться до наших времен. Согласно стандартной модели Большого взрыва, их нынешняя плотность должна приблизительно совпадать с плотностью протонов. Но в этом случае общая плотность космической энергии как минимум в квадриллион раз превышала бы реальную.

Все попытки обнаружить монополи до сих пор завершались неудачей. Как показал поиск монополей в железных рудах и морской воде, отношение их числа к числу протонов не превышает 10 -30 . Либо этих частиц вообще нет в нашей области пространства, либо столь мало, что приборы неспособны их зарегистрировать, несмотря на четкую магнитную подпись. Это подтверждают и астрономические наблюдения: наличие монополей должно сказываться на магнитных полях нашей Галактики, а этого не обнаружено.

Плоская проблема

Астрономы уже давно уверились в том, что если нынешнее космическое пространство и деформировано, то довольно умеренно. Модели Фридмана и Леметра позволяют вычислить, какой была эта искривленность вскоре после Большого Взрыва, чтобы находиться в согласии с современными измерениями. Кривизна пространства оценивается с помощью безразмерного параметра Ω, равного отношению средней плотности космической энергии к тому ее значению, при котором эта кривизна делается равна нулю, а геометрия Вселенной, соответственно, становится плоской. Лет сорок назад уже не было сомнений, что если этот параметр и отличается от единицы, то не больше, чем в десять раз в ту или иную сторону. Отсюда следует, что через одну секунду после Большого взрыва он отличался от единицы в большую или меньшую сторону всего лишь на 10 -14 ! Является ли такая фантастически точная «настройка» случайной или она обусловлена физическими причинами? Именно так в 1979 году задачу сформулировали американские физики Роберт Дике и Джеймс Пиблз.

Конечно, можно допустить, что монополей вообще никогда не было. Некоторые модели объединения фундаментальных взаимодействий и в самом деле не предписывают их появления. Но проблемы горизонта и плоской Вселенной остаются. Так получилось, что в конце 1970-х космология столкнулась с серьезными препятствиями, для преодоления которых явно требовались новые идеи.

Отрицательное давление

И эти идеи не замедлили появиться. Главной из них была гипотеза, согласно которой в космическом пространстве помимо вещества и излучения существует скалярное поле (или поля), создающее отрицательное давление. Такая ситуация выглядит парадоксальной, однако же она встречается в повседневной жизни. Система с положительным давлением, например сжатый газ, при расширении теряет энергию и охлаждается. Эластичная лента, напротив, пребывает в состоянии с отрицательным давлением, ведь, в отличие от газа, она стремится не расшириться, а сжаться. Если такую ленту быстро растянуть, она нагреется и ее тепловая энергия возрастет. При расширении Вселенной поле с отрицательным давлением копит энергию, которая, высвобождаясь, способна породить частицы и кванты света.


Локальная геометрия вселенной определяется безразмерным параметром Ω: если он меньше единицы, вселенная будет гиперболической (открытой), если больше — сферической (закрытой), а если в точности равен единице — плоской. Даже очень небольшие отклонения от единицы со временем могут привести к значительному изменению этого параметра. На иллюстрации синим показан график параметра для нашей Вселенной.

Отрицательное давление может иметь различную величину. Но существует особый случай, когда оно равно плотности космической энергии с обратным знаком. При таком раскладе эта плотность остается постоянной при расширении пространства, поскольку отрицательное давление компенсирует растущее «разрежение» частиц и световых квантов. Из уравнений Фридмана-Леметра следует, что Вселенная в этом случае расширяется экспоненциально.

Гипотеза экспоненциального расширения позволяет разрешить все три проблемы, приведенные выше. Предположим, что Вселенная возникла из крошечного «пузырька» сильно искривленного пространства, который претерпел превращение, наделившее пространство отрицательным давлением и тем заставившее его расширяться по экспоненциальному закону. Естественно, что после исчезновения этого давления Вселенная возвратится к прежнему «нормальному» расширению.


Решение проблем

Будем считать, что радиус Вселенной перед выходом на экспоненту всего на несколько порядков превышал планковскую длину, 10 -35 м. Если в экспоненциальной фазе он вырастет, скажем, в 10 50 раз, то к ее концу достигнет тысяч световых лет. Каким бы ни было отличие параметра кривизны пространства от единицы до начала расширения, к его концу оно уменьшится в 10 -100 раз, то есть пространство станет идеально плоским!

Аналогично решается проблема монополей. Если топологические дефекты, ставшие их предшественниками, возникли до или даже в процессе экспоненциального расширения, то к его концу они должны отдалиться друг от друга на исполинские расстояния. С тех пор Вселенная еще изрядно расширилась, и плотность монополей упала практически до нуля. Вычисления показывают, что даже если исследовать космический кубик с ребром в миллиард световых лет, то там с высочайшей степенью вероятности не найдется ни единого монополя.


Гипотеза экспоненциального расширения подсказывает и простое избавление от проблемы горизонта. Предположим, что размер зародышевого «пузырька», положившего начало нашей Вселенной, не превышал пути, который успел пройти свет после Большого взрыва. В этом случае в нем могло установиться тепловое равновесие, обеспечившее равенство температур по всему объему, которое сохранилось при экспоненциальном расширении. Подобное объяснение присутствует во многих учебниках космологии, однако можно обойтись и без него.

Из одного пузыря

На рубеже 1970−1980-х несколько теоретиков, первым из которых стал советский физик Алексей Старобинский, рассмотрели модели ранней эволюции Вселенной с короткой стадией экспоненциального расширения. В 1981 году американец Алан Гут опубликовал работу, привлекшую к этой идее всеобщее внимание. Он первым понял, что подобное расширение (скорее всего, завершившееся на возрастной отметке в 10 -34 с) снимает проблему монополей, которыми он поначалу и занимался, и указывает путь к разрешению неувязок с плоской геометрией и горизонтом. Гут красиво назвал такое расширение космологической инфляцией, и этот термин стал общепринятым.


Нормальное расширение со скоростями, меньшими скорости света, приводит к тому, что вся Вселенная рано или поздно будет находиться внутри нашего горизонта событий. Инфляционное расширение со скоростями, значительно превышающими скорость света, привело к тому, что нашему наблюдению доступна лишь малая часть Вселенной, образовавшейся при Большом Взрыве. Это позволяет решить проблему горизонта и объяснить одинаковую температуру реликтового излучения, приходящего из различных точек небосвода.

Но модель Гута все же имела серьезный недостаток. Она допускала возникновение множества инфляционных областей, претерпевающих столкновения друг с другом. Это вело к формированию сильно неупорядоченного космоса с неоднородной плотностью вещества и излучения, который совершенно не похож на реальное космическое пространство. Однако вскоре Андрей Линде из Физического института Академии наук (ФИАН), а чуть позже Андреас Альбрехт с Полом Стейнхардтом из Университета Пенсильвании показали, что если изменить уравнение скалярного поля, то все становится на свои места. Отсюда следовал сценарий, по которому вся наша наблюдаемая Вселенная возникла из одного вакуумного пузыря, отделенного от других инфляционных областей непредставимо большими расстояниями.

Хаотическая инфляция

В 1983 году Андрей Линде совершил очередной прорыв, разработав теорию хаотической инфляции, которая позволила объяснить и состав Вселенной, и однородность реликтового излучения. Во время инфляции любые предшествующие неоднородности скалярного поля растягиваются настолько, что практически исчезают. На завершающем этапе инфляции это поле начинает быстро осциллировать вблизи минимума своей потенциальной энергии. При этом в изобилии рождаются частицы и фотоны, которые интенсивно взаимодействуют друг с другом и достигают равновесной температуры. Так что по окончании инфляции мы имеем плоскую горячую Вселенную, которая затем расширяется уже по сценарию Большого взрыва. Этот механизм объясняет, почему сегодня мы наблюдаем реликтовое излучение с мизерными колебаниями температуры, которые можно приписать квантовым флуктуациям в первой фазе существования Вселенной. Таким образом, теория хаотической инфляции разрешила проблему горизонта и без допущения, что до начала экспоненциального расширения зародышевая Вселенная пребывала в состоянии теплового равновесия.


Согласно модели Линде, распределение вещества и излучения в пространстве после инфляции просто обязано быть почти идеально однородным, за исключением следов первичных квантовых флуктуаций. Эти флуктуации породили локальные колебания плотности, которые со временем дали начало галактическим скоплениям и разделяющим их космическим пустотам. Очень важно, что без инфляционного «растяжения» флуктуации оказались бы слишком слабыми и не смогли бы стать зародышами галактик. В общем, инфляционный механизм обладает чрезвычайно мощной и универсальной космологической креативностью — если угодно, предстает в качестве вселенского демиурга. Так что заглавие этой статьи — отнюдь не преувеличение.

В масштабах порядка сотых долей величины Вселенной (сейчас это сотни мегапарсек) ее состав был и остается однородным и изотропным. Однако на шкале всего космоса однородность исчезает. Инфляция прекращается водной области и начинается в другой, и так до бесконечности. Это самовоспроизводящийся бесконечный процесс, порождающий ветвящееся множество миров — Мультивселенную. Одни и те же фундаментальные физические законы могут там реализоваться в различных ипостасях — к примеру, внутриядерные силы и заряд электрона в других вселенных могут оказаться отличными от наших. Эту фантастическую картину в настоящее время на полном серьезе обсуждают и физики, и космологи.


Увеличивающаяся сфера демонстрирует решение проблемы плоской Вселенной в рамках инфляционной космологии. По мере роста радиуса сферы выбранный участок ее поверхности становится все более и более плоским. Точно таким же образом экспоненциальное расширение пространства-времени на этапе инфляции привело к тому, что сейчас наша Вселенная является почти плоской.

Борьба идей

«Основные идеи инфляционного сценария были сформулированы три десятка лет назад, — объясняет «ПМ» один из авторов инфляционной космологии, профессор Стэнфордского университета Андрей Линде. — После этого главной задачей стала разработка реалистических теорий, основанных на этих идеях, но только критерии реалистичности не раз изменялись. В 1980-х доминировало мнение, что инфляцию удастся понять с помощью моделей Великого объединения. Потом надежды растаяли, и инфляцию стали интерпретировать в контексте теории супергравитации, а позднее — теории суперструн. Однако такой путь оказался очень нелегким. Во‑первых, обе эти теории используют чрезвычайно сложную математику, а во-вторых, они так устроены, что реализовать с их помощью инфляционный сценарий весьма и весьма непросто. Поэтому прогресс здесь оказался довольно медленным. В 2000 году трое японских ученых с немалым трудом получили в рамках теории супергравитации модель хаотической инфляции, которую я придумал почти на 20 лет раньше. Спустя три года мы в Стэнфорде сделали работу, которая показала принципиальную возможность конструирования инфляционных моделей с помощью теории суперструн и объясняла на ее основе четырехмерность нашего мира. Конкретно, мы выяснили, что так можно получить вакуумное состояние с положительной космологической постоянной, которое необходимо для запуска инфляции. Наш подход с успехом развили другие ученые, и это весьма способствовало прогрессу космологии. Сейчас понятно, что теория суперструн допускает существование гигантского количества вакуумных состояний, дающих начало экспоненциальному расширению Вселенной.


Теперь следует сделать еще один шаг и понять устройство нашей Вселенной. Эти работы ведутся, но встречают огромные технические трудности, и что получится в результате, пока не ясно. Мои коллеги и я последние два года занимаемся семейством гибридных моделей, которые опираются и на суперструны, и на супергравитацию. Прогресс есть, мы уже способны описать многие реально существующие вещи. Например, мы близки к пониманию того, почему сейчас столь невелика плотность энергии вакуума, которая всего втрое превышает плотность частиц и излучения. Но необходимо двигаться дальше. Мы с нетерпением ожидаем результатов наблюдений космической обсерватории Planck, которая измеряет спектральные характеристики реликтового излучения с очень высоким разрешением. Не исключено, что показания ее приборов пустят под нож целые классы инфляционных моделей и дадут стимул к развитию альтернативных теорий».


Модель космологической инфляции, решающая многие неувязки теории Большого Взрыва, утверждает, что за очень короткое время размер пузырька, из которой образовалась наша Вселенная, увеличился в 10 50 раз. После этого Вселенная продолжила расширяться, но уже значительно медленнее.

Инфляционная космология может похвастаться немалым числом замечательных достижений. Она предсказала плоскую геометрию нашей Вселенной задолго до того, как этот факт подтвердили астрономы и астрофизики. Вплоть до конца 1990-х считалось, что при полном учете всего вещества Вселенной численная величина параметра не превышает 1/3. Понадобилось открыть темную энергию, чтобы удостовериться, что эта величина практически равна единице, как и следует из инфляционного сценария. Были предсказаны колебания температуры реликтового излучения и заранее вычислен их спектр. Подобных примеров немало. Попытки опровергнуть инфляционную теорию предпринимались неоднократно, но это никому не удалось. Кроме того, как считает Андрей Линде, в последние годы сложилась концепция множественности вселенных, формирование которой вполне можно назвать научной революцией: «Несмотря на свою незавершенность, она становится частью культуры нового поколения физиков и космологов».


Наравне с эволюцией

«Инфляционная парадигма реализована сейчас во множестве вариантов, среди которых нет признанного лидера, — говорит директор Института космологии при университете Тафтса Александр Виленкин. — Моделей много, но никто не знает, которая из них правильная. Поэтому говорить о каком-то драматическом прогрессе, достигнутом в последние годы, я бы не стал. Да и сложностей пока хватает. Например, не совсем понятно, как сравнивать вероятности событий, предсказанных той или иной моделью. В вечной вселенной любое событие должно происходить бесчисленное множество раз. Так что для вычисления вероятностей надо сравнивать бесконечности, а это очень непросто. Также существует нерешенная проблема начала инфляции. Скорее всего, без него не обойтись, но еще не понятно, как к нему подобраться. И все же у инфляционной картины мира нет серьезных конкурентов. Я бы сравнил ее с теорией Дарвина, которая поначалу тоже имела множество неувязок. Однако альтернативы у нее так и не появилось, и в конце концов она завоевала признание ученых. Мне кажется, что и концепция космологической инфляции прекрасно справится со всеми трудностями».

Сразу после зарождения Вселенная расширялась невероятно быстро.

С 30-х годов XX века астрофизики уже знали, что, согласно закону Хаббла , Вселенная расширяется, а значит, она имела свое начало в определенный момент в прошлом. Задача астрофизиков, таким образом, внешне выглядела простой: отследить все стадии хаббловского расширения в обратной хронологии, применяя на каждой стадии соответствующие физические законы, и, пройдя этот путь до конца — точнее, до самого начала, — понять, как именно всё происходило.

В конце 1970-х годов, однако, оставались нерешенными несколько фундаментальных проблем, связанных с ранней Вселенной, а именно:

  • Проблема антивещества . Согласно законам физики, вещество и антивещество имеют равное право на существование во Вселенной (см. Античастицы), однако Вселенная практически полностью состоит из вещества. Почему так произошло?
  • Проблема горизонта. По фоновому космическому излучению (см. Большой взрыв) мы можем определить, что температура Вселенной везде примерно одинакова, однако отдельные ее части (скопления галактик) не могли находиться в контакте (как принято говорить, они были за пределами горизонта друг друга). Как же получилось, что между ними установилось тепловое равновесие?
  • Проблема распрямления пространства. Вселенная, судя по всему, обладает именно той массой и энергией, которые необходимы для того, чтобы замедлить и остановить хаббловское расширение. Почему из всех возможных масс Вселенная имеет именно такую?

Ключом к решению этих проблем послужила идея, что сразу после своего рождения Вселенная была очень плотной и очень горячей. Всё вещество в ней представляло собой раскаленную массу кварков и лептонов (см. Стандартная модель), у которых не было никакой возможности объединиться в атомы. Действующим в современной Вселенной различным силам (таким, как электромагнитные и гравитационные силы) тогда соответствовало единое поле силового взаимодействия (см. Универсальные теории). Но когда Вселенная расширилась и остыла, гипотетическое единое поле распалось на несколько сил (см. Ранняя Вселенная).

В 1981 году американский физик Алан Гут осознал, что выделение сильных взаимодействий из единого поля, случившееся примерно через 10 -35 секунды после рождения Вселенной (только задумайтесь — это 34 нуля и единица после запятой!), стало поворотным моментом в ее развитии. Произошел фазовый переход вещества из одного состояния в другое в масштабах Вселенной — явление, подобное превращению воды в лед. И как при замерзании воды ее беспорядочно движущиеся молекулы вдруг «схватываются» и образуют строгую кристаллическую структуру, так под влиянием выделившихся сильных взаимодействий произошла мгновенная перестройка, своеобразная «кристаллизация» вещества во Вселенной.

Кто видел, как лопаются водопроводные трубы или трубки автомобильного радиатора на сильном морозе, стоит только воде в них превратиться в лед, тот на собственном опыте знает, что вода при замерзании расширяется. Алану Гуту удалось показать, что при разделении сильных и слабых взаимодействий во Вселенной произошло нечто подобное — скачкообразное расширение. Это расширение, которое называется инфляционным , во много раз быстрее обычного хаббловского расширения. Примерно за 10 -32 секунды Вселенная расширилась на 50 порядков — была меньше протона, а стала размером с грейпфрут (для сравнения: вода при замерзании расширяется всего на 10%). И это стремительное инфляционное расширение Вселенной снимает две из трех вышеназванных проблем, непосредственно объясняя их.

Решение проблемы распрямления пространства нагляднее всего демонстрирует следующий пример: представьте координатную сетку, нарисованную на тонкой эластичной карте, которую затем смяли как попало. Если теперь взять и сильно встряхнуть эту смятую в комок эластичную карту, она снова примет плоский вид, а координатные линии на ней восстановятся, независимо от того, насколько сильно мы деформировали ее, когда скомкали. Аналогичным образом, не важно, насколько искривленным было пространство Вселенной на момент начала ее инфляционного расширения, главное — по завершении этого расширения пространство оказалось полностью распрямленным. А поскольку из теории относительности мы знаем, что кривизна пространства зависит от количества материи и энергии в нем, становится понятно, почему во Вселенной находится ровно столько материи, сколько необходимо, чтобы уравновесить хаббловское расширение.

Объясняет инфляционная модель и проблему горизонта , хотя не так прямо. Из теории излучения черного тела мы знаем, что излучение, испускаемое телом, зависит от его температуры. Таким образом, по спектрам излучения удаленных участков Вселенной мы можем определить их температуру. Такие измерения дали ошеломляющие результаты: оказалось, что в любой наблюдаемой точке Вселенной температура (с погрешностью измерения до четырех знаков после запятой) одна и та же. Если исходить из модели обычного хаббловского расширения, то вещество сразу же после Большого взрыва должно было разлететься слишком далеко, чтобы температуры могли уравняться. Согласно же инфляционной модели, вещество Вселенной до момента t = 10 -35 секунды оставалось гораздо более компактным, чем при хаббловском расширении. Этого чрезвычайно краткого периода было вполне достаточно, чтобы установилось термическое равновесие, которое не было нарушено на стадии инфляционного расширения и сохранилось до сих пор.

Американский физик, специалист в области элементарных частиц и космологии. Родился в Нью-Брюнсвике, штат Нью-Джерси. Докторскую степень получил в Массачусетском технологическом институте, куда в 1986 году и вернулся, став профессором физики. Свою теорию инфляционного расширения Вселенной Гут разработал еще в Стэнфордском университете, занимаясь теорией элементарных частиц . Известен его отзыв о Вселенной как о «бескрайней скатерти-самобранке».

Эпиграф:
И целого мира мало!

Могу поспорить, среди читающих эти строки нет ни одного человека, который бы ни разу в жизни не слышал о теории Большого Взрыва. Допускаю, что на Земле попадаются подобные персонажи - крестьянин из заброшенной деревушки в горах Тибета, туземец племени Тонга–Тонга, мормон из Юты, наверняка такие где–то, да встречаются. Однако если вы умеете читать, имеете доступ в Интернет и смогли, пусть случайно, зайти в этот блог - могу гарантировать, вы обязательно что–нибудь хоть краем уха, но слышали о теории Большого Взрыва.

В этом посте я расскажу о текущем научном понимании этой теории, текст получился немаленький, но обещаю, сегодня вы узнаете что–то новое, то, что раньше не знали, и даже не задумывались.

Прежде всего, забавно, но мало кто задумывался, в чем же, собственно, заключается теория Большого Взрыва? Попробуйте вот прямо сейчас покрутить в голове факты, что вы знаете о ней, а потом я изложу, как она звучит на самом деле .

Попробовали? Ну, еще 20 секунд на размышления...

Итак. Теория Большого Взрыва утверждает, что раньше наша Вселенная была маленькая и горячая, с тех пор она расширяется и остывает. Точка. Больше ничего в данной теории нет, не выдумывайте лишнего.

Удивительно, но в классической теории Большого Взрыва нет самого важного - нет собственно Большого Взрыва. Нигде не упоминается, что это был за "взрыв", что же там взорвалось, куда взорвалось, как и почему.

Следуя основному тезису, что "сначала наша Вселенная была маленькая и горячая" , можно мысленно растянуть его еще дальше (хотя обращаю внимание, это уже НЕ ЕСТЬ теория Большого Взрыва, это именно попытки растянуть границы применимости в область догадок и фантазий) и придти к предположению, что еще раньше вся Вселенная была собрана в одну точку, называемую точкой сингулярности , которая позже взорвалась по каким–то своим внутренним причинам.

Замечу, что теория Большого Взрыва ("раньше Вселенная была маленькая и горячая, а потом стала большая и холодная") сегодня не является теорией , как таковой. Можно считать, что это вполне себе научно установленный факт , подтверждаемый огромным количеством наблюдений, сегодня нет ни одного стоящего ученого, который бы сомневался в нем. Но вот насчет точки сингулярности (лежащей, повторюсь, вне пределов границ применимости теории Большого Взрыва) у ученых не только нет единого мнения, у них вообще никакого мнения нет.

Никто не имеет ни малейшего понятия, что это за "сингулярность" . Сингулярность это вообще плейсхолдер (слово–заменитель) фразы "я не знаю". То есть на вопрос "равны ли классы P и NP?", или "жив ли кот Шредингера?", или даже "как звучит хлопок одной ладони?" можно смело отвечать "Сингулярность!".
Не ошибешься.

Теория Большого Взрыва была сформулирована в 20–х годах прошлого столетия, и вот уже с тех пор целый век ученые только и занимаются тем, что пытаются понять, в чем же суть сингулярности, и нельзя ли как–нибудь от нее избавиться?

Основная проблема сингулярности - в ней происходит натуральное деление на ноль, причем в самом прямом смысле. Все формулы превращаются в чепуху, 3 становится равно 5, и одна бесконечность начинает наползать на другую. А это конец физики, конец науки, дальше живут лишь драконы–ЕГГОГи, и где–то из складок пространства ехидно подмигивает сам Всевышний.

Много разных способов, подходов и хитростей предлагалось на замену сингулярности, лучше всех покуда получилось у американского физика Алана Гута в 1981–м году. Как всегда в очередной раз напомню, наука дело коллективное, Гут, как и все предшественники, вскарабкался на плечи гигантов, но в этом коротком тексте на пальцах™ я не стану перечислять всех предшественников, коллег и оппонентов, упомяну лишь одну фамилию, того заслуживающую - Алексей Старобинский , который высказывал похожие идеи ранее, но слава первооткрывателя закрепилась именно за Аланом Гутом.

Гут предложил сделать хитрый финт ушами. Внимательно следите за руками и ушами, сейчас я покажу вам фокус. Давайте мысленно(!) достанем из всех текстов слово "сингулярность" и положим вместо него фразу "скалярное поле". Обращаю ваше внимание, на данном этапе ничего не поменялось, термин "скалярное поле" продолжает являться полным аналогом () "сингулярности", которая в свою очередь, как мы помним, лишь заменитель фразы "я не знаю".

Что это за "скалярное поле", каковы его характеристики, откуда оно появилось, что вообще, черт возьми, происходит - все так же нет ответов. Покуда "скалярное поле", или как его еще называют в английской традиции "поле инфлатонов" (потому что "инфляция" же), это лишь результат мысленного эксперимента в попытках уйти от сингулярности и придти к чему–то еще. Пока это не более чем замена шила на мыло. Но будем настоящими учеными, доведем наш мысленный эксперимент до конца, и посмотрим, что же получилось в итоге.

Итак, по Гуту, первоначальная протоВселенная была безвидна и пуста, в ней ничего не было и ничего не происходило, она была бесконечна, или как минимум очень–очень–очень большая, гораздо больше, чем современная Обозримая Вселенная , и вся она была заполнена этим самым скалярным полем , про которое нам ничего не известно, кроме того, что это какое–то поле, и что оно как ясно из названия - скалярное.

Не стану грузить читателя определением "скаляра", это не особо нужно в рамках данного поста, совсем просто и на пальцах™ можно считать, что в этом поле присутствует какая–то "напряженность" . Поле несет в себе некую энергию, как грозовая туча несет в себе готовую пролиться дождем воду.

Чем эта ситуация лучше предыдущей с сингулярностью с точки зрения физики? Да всем! Пусть мы не знаем ни одной характеристики данного поля, пусть мы понятия не имеем, что там была за напряженность и откуда она взялась, но это вам не деление на ноль! Теперь у нас есть решаемая задача, можно начать писать какие–то формулы (сами понимаете, настоящего ученого мёдом не корми, дай только каких–нибудь трехэтажных формул нафигачить), в которые возможно подставлять начальные условия и коэффициенты, делить и умножать, вычислять, что получиться в итоге, и потом сравнивать с результатами непосредственных наблюдений и экспериментов.

Да, звучит смешно и даже как–то глупо, натуральное "шило на мыло", но это оказался реальный прорыв. Это шаг вперед по сравнению с тотальным "я не знаю", начертанным на бетонной стене, это уже серьезная заявка на успех, на обход, на подкоп или хотя бы на лестницу.

Однако самое смешное, что фокус со скалярным полем у Алана Гута удался, а вот формулы как раз не заладились. Алан принес в науку идею скалярного поля и его инфляции (о механизме инфляции чуточку позже), но верно описать свои мысли сухим языком математики у него не получилось. Ряды расходились, все снова начинало делиться на ноль, короче полный провал.

И лишь через год подпритухший факел инфляционной модели высоко поднял Андрей Линде , советский ученый, временно проживающий в США и возглавляющий кафедру физики в Стэнфордском университете.

Он исправил ошибки теории Алана Гута, заставил формулы сходиться и давать предсказуемый и проверяемый результат, но попутно открыл настоящий ящик Пандоры, о котором упомяну в самом конце поста, оставлю его на сладкое.

Суть инфляционной модели Вселенной (коротенько так, образно и туманно) такова:

Мы помним, что протоВселенная, предшественница нашей Вселенной, была заполнена неким скалярным полем, о котором нам ничего не известно, кроме наличия самого поля и его "скалярности". Скалярное, не скалярное, но принципы квантовой механики никто не отменял! Вот уже сто лет, как никому, включая самого Альберта Эйнштейна, ни разу не удавалось принципы квантовой механики. Что означает, что даже если это поле изначально было однородным (а оно, в принципе, не обязательно должно быть изначально однородным), все равно со временем, под действием квантовых флуктуаций в нем таки появятся мелкие неоднородности, которые по указанию его величества Квантового Случая, могут накладываться друг на друга, образовывая неоднородности крупные.

Ну, крупные–то по квантовым меркам. Все равно это все еще милли–милли–милли–...(и еще 10 раз милли–) Джоули, метры и килограммы, ни о какой нашей Вселенной, с триллионами звезд и галактик речь пока не идет.

И тут внезапно выясняется, что поле у нас не абы какое, а весьма хитрое! В обычном поле, в котором нет трения, неоднородности просто рано или поздно "замкнутся и коротнут " сами на себя. Например возьмем известное и понятное электромагнитное поле. Если где–то возникла разность потенциалов, которая продолжает увеличиваться, то рано или поздно, но закоротит обязательно. Пробежит разряд, возникнет мини–искра (или мега–молния, если разность потенциалов была большая как в грозу) и неоднородность нивелируется.

Кстати, во–первых, внимательный читатель со звездочкой (*) , тут должен заявить, что электромагнитное поле, не есть поле скалярное, а как раз наоборот - векторное поле, причем весьма замороченное. Но в данном конкретном примере это роли вообще не играет. И в том и в том поле коротнет практически одинаково, по одному сценарию. Ну, и во–вторых, нельзя сказать, что прям непременно тут же коротнет, заряды могут накапливаться годами и даже миллионами лет. Все зависит от тысячи разных условий, но если прождать достаточно долго (например вечность), то короткое замыкание неоднородностей непременно случится. Естественно, это все не более чем аналогия, причем в этом месте не очень прямая, я лишь пытаюсь на пальцах ™ объяснить поведение непонятного скалярного поля на примере понятного электромагнитного.

Так вот, в электромагнитном поле практически нет трения , если можно так выразиться. У электронов есть конечная скорость передвижения и они испытывают прямое сопротивление среды, которое мы и называем сопротивлением электрического тока , но изменения поля передаются со скоростью самого электромагнитного поля, т.е. со скоростью света. Если отойти от темы слишком далеко, то читатель с двумя звездочками (**) должен знать, что даже полный и абсолютный вакуум имеет некий аналог "сопротивления" электромагнитным волнам, но это уже совсем глубокие дебри силы Казимира и прочих эффектов вакуумных флуктуаций, нам туда пока не стоит углубляться, хоть такие посты из серии на пальцах ™ планируются в неизвестном, но обозримом будущем.

Короче, можно сказать, что у электромагнитного поля нет внутреннего трения, или оно пренебрежимо мало. Ну, коротнуло и коротнуло в мгновение ока. Если наложить аналогию на аналогию, можно сказать, что замыкание электромагнитного поля это словно бы гора, находящаяся в области высокого потенциала, на которой лежит мячик, а область низкого потенциала это яма под горой, куда этот мячик в конце концов упадет. Так как трения почти нет, мяч несется вниз со всей скорости, фактически со скоростью света. Бац, и упал.

При падении обязательно выделится какая–то энергия, которая пойдет на нагревание окружающего пространства, земли и мячика. В случае электромагнитного поля происходит натуральный разряд поля, т.е. молния . Если дело происходило под водой (а электрические разряды могут коротить и под водой), то в этом месте образуется крохотный пузырек воздуха, когда вода распадется на составляющие ее кислород и водород. Разряд в буквальном смысле молниеносный, разность потенциалов падает быстро, пузырек воздуха получается совсем маленький.

Теперь вернемся к нашему гипотетическому скалярному полю. Так как оно все еще гипотетическое, фантазировать про него и его свойства можно как угодно. Предположим, что в этом поле существует внутреннее трение и оно очень большое. Очень–очень большое. Перекладываясь на аналогию с мячом, он будет падать с горы не в вакууме или там воздухе, а в очень вязкой и тягучей жидкости, например в подсолнечном масле или мёде.

Стало быть сила тяжести тянет мячик вниз, а сила трения мешает ему быстро падать и тянет его назад вверх. И вместо того, чтобы стремительно нестись к подножью (а мы помним, что это лишь аналогия того, как быстро разряжается неравномерность напряженности поля ), мячик плавно, практически с постоянной скоростью, т.е. почти равномерно опускается вниз. Разряжение скалярного поля ответственно за создание вакуума, т.е. нашего родимого пространства–времени, падение его потенциала словно бы надувает воздушный шарик, только вместо воздуха там вакуум, а вместо шарика - наша Вселенная. Если бы все происходило без трения, напряженность скалярного поля упала бы очень быстро и у нас получился бы маленький пузырек вакуума в огромном безбрежном океане протоВселенной. Но трение (а по сути само скалярное поле) не дает напряженности падать быстро, мешает и тянет само себя назад . Из–за этого, в то время как напряженность медленно снижается, фактически стоит на месте, "сила надувания", т.е. сила, которая распирает образующийся вакуум во все стороны остается постоянной, и продолжает накачивать с прежним усилием, не смотря на то, что размеры новорожденной Вселенной все увеличиваются и увеличиваются.

Ученые знают, а вы можете мне на слово поверить, а можете проверить и погуглить, что в данном случае у нас получается уравнение, решением которого является экспонента. Т.е. получается натуральное экспоненциальное расширение Вселенной . В миллиарды миллиардов миллиардов раз. За не очень большой, весьма короткий промежуток времени. Все зависит от того, какие коэффициенты у нас входят в экспоненту, т.е. какова была начальная напряженность скалярного поля, какова была сила трения и т.д.

Расчеты показывают, если "сила распирания" не падает со временем, за какие–то 10 –36 доли секунды новая с пылу с жару Вселенная (т.е. этот изначальный пузырек вакуума) может расшириться в 10 26 раз. Да, это на многие порядки превосходит скорость света, но тут нет никакого парадокса. Теория Относительности запрещает любой материи передвигаться в пространстве быстрее скорости света, но совсем не запрещает самому пространству (т.е. пустоте) расширяться в стороны с любой скоростью.

Выходит, что никакого Большого Взрыва как "взрыва" вовсе не было. Было быстрое, очень быстрое, взрывообразно или экспоненциально быстрое "надувание и расширение" пузырька нашей Вселенной, именно что инфляция , от английского слова inflate - "накачивать", "раздувать".

Но тут хитрый момент! Расширяется–то вакуум, т.е. абсолютная пустота, откуда же взялась вся та энергия и материя, что составляет сейчас все наши звезды, галактики и прочий контент современного космоса? И почему Вселенная была раньше горячая, чему там быть горячему, пустому вакууму что–ли?

Здесь опять сложная фиговина с зубодробильными формулами, постараюсь разъяснить ее при помощи чего бы вы думали? Аналогии на пальцах™ , ну конечно!

Вы знаете, что если у нас что–то очень быстро расширяется, то это что–то так же стремительно теряет энергию, в смысле так же быстро размазывает ее по всему расширяющемуся объему, и в каждой отдельной точке или кубометре пространства энергии становится все меньше и меньше. Это вам не хухры–мухры, это между прочим первое начало термодинамики!

У нас же получается наоборот. Если очень быстро растянуть пузырек Вселенной, он начнет мгновенно накапливать энергию. Ведь гравитационная энергия всегда идет со знаком минус. Если разнести в пространстве два тела, или, скажем, поднять тяжелый груз над поверхностью Земли, потенциальная, а следовательно и общая энергия системы увеличится ! А так как все происходит быстро (напомню, очень–очень–очень–... и еще 26 раз очень быстро), то в случае с каким–нибудь газом, например воздухом, он резко охлаждается, образует туман и находящийся в нем водяной пар выпадает в осадок, образуя натуральный снег или лед. Все видели, если открыть клапан баллона со сжиженным газом, баллон тут же покрывается инеем.

А в случае со Вселенной, наоборот температура резко повышается, случается фазовый переход и высвободившаяся энергия "выпадает в осадок" в виде собственно энергии (фотонов) и материи (электронов, протонов и прочих элементарных частиц). Вот почему по окончанию инфляции, которая начиналась не такой уж и горячей, Вселенная быстро разогревается до беспредельных энергий и температур, которые раньше считалось вырвались наружу прямо из точки сингулярности. А дальше, когда мячик долетел до дна ямы и период экспоненциального расширения закончился, все продолжается по старому сценарию классического Большого Взрыва, Вселенная расширяется, но уже не экспоненциально, а медленно так, по инерции. Но теперь все это выходит без самого Большого Взрыва и его сингулярности.

Звучит непривычно, звучит каким–то обманом, но если задуматься, все логично - увеличившаяся потенциальная энергия, энергия гравитации со знаком минус в точности компенсируется энергией кинетической, энергией движения (температурой) и энергией покоя (массой) "выпавших в осадок" частиц материи. Общая энергия Вселенной продолжает оставаться равна нулю, минус сто да плюс сто дает в результате ноль. Как минус миллиард и плюс миллиард.

Если быть до конца точным, там не совсем ровно ноль получается в итоге, ведь напряженность первоначального скалярного поля, с которого все началось, в этом месте таки упала почти до нуля. Но абсолютная величина данного падения, какие–то там доли Джоуля (или в чем там у нас измеряется напряженность поля инфлатонов? ), все равно остается в пределах пусть и крупных, но все еще квантовых эффектов. Это не идет ни в какое сравнение с трилли–миллиардами (точнее 10 50 и так далее) килограммами народившейся материи и такими же порядками запасенной гравитационной энергии. Мышь родила гору, в прямом смысле этого слова. Точнее гору и яму рядом для равновесия.

Еще раз для понятности повторю предыдущий абзац немного другими словами. Когда в результате падения напряженности скалярного поля в нем появился маленький пузырек нашего пространства–времени, т.е. обычного вакуума, это пространство–время оказывается "немножечко погнутым". Почему? Потому что именно так любая энергия влияет на пространство. Ньютон думал, что гравитация есть сила притяжения двух масс. А Эйнштейн сказал, что гравитация есть лишь гнутость пространства. Если пространство "гнутое" в нем уже запасена какая–то гравитационная энергия, даже если это пространство абсолютно пустое и в нем нет массы. Что у нас гнет пространство? Его гнет энергия (правильнее говорить - тензор энергии–импульса). Масса это тоже энергия, много энергии, но можно обойтись и вовсе без массы, вообще любая энергия гнет пространство. Когда под действием падения энергии скалярного поля "надулся маленький пузырик вакуума", в нем уже есть энергия скалярного поля, вакуум в нем уже "гнутый". Если этот пузырь быстро растянуть в стороны, гравитационная энергия резко возрастет, что вызовет "выпадение в осадок" массы, которая с одной стороны добавляет Вселенной энергии (т.к. E=mc 2) со знаком плюс, а с другой - добавляет во Вселенную гравитации этой массы со знаком минус, а значит и дальше продолжится гонка–состязание горы и мыши.

Да, напоминаю, если кто позабыл, что все это происходит в рамках мысленного эксперимента по избавлению от сингулярности! Это пока всего лишь гимнастика ума, наукой здесь еще не очень пахнет, хотя сам мысленный эксперимент - обязательный атрибут научного метода. Чтобы подняться в ранге хотя бы до гипотезы, не говоря уже о теории, нужно много пройти и многое объяснить.

Повторяю, мы все еще в процессе обмена шила на мыло. Мы никуда не ушли от непонятной первоначальной сингулярности, всего–то назвали ее немного по другому и в результате встали с ног на голову. Однако конкретные детали теории инфляционного расширения Вселенной, в отличие от классической теории Большого Взрыва, позволяют найти объяснения многим наблюдаемым феноменам (проблема начальных условий, проблема однородности и изотропности наблюдаемой Вселенной, проблема плоскости наблюдаемой Вселенной, проблема с магнитными монополями и много чего еще), перед которыми сингулярность Большого Взрыва пасовала. Это делает инфляционную модель весьма привлекательной, но совершенно не доказывает ее и не объявляет верной. В состоянии "молодой и перспективной", но "недоказанной и немного фантастической" теории инфляционная модель находилась с 80–х годов последнего века прошлого тысячелетия (это я так "30 лет назад" замысловато сказал), покуда в 2014 году не появились первые, все еще робкие, неподтвержденные и весьма косвенные улики , в смысле результаты экспериментов ее подтверждающие. А здесь уже не просто заявка, тут получается реальный успех!

Что это за эксперименты, каковы их результаты, что такое "гравитационные волны" как они связаны с инфляцией и почему их открытие тянет на нобелевскую премию, которую, я думаю, Алану Гуту и Андрею Линде таки вручат в конечном итоге, а так же все прочие технические подробности собираются в кучу и будут описаны особо, во второй части данного повествования, они тянут на полноценный отдельный пост. Здесь я лишь изложил суть инфляционной теории, остановив ее на этапе 2013 года - интересной, заманчивой, но ничем не подтвержденной.

А теперь обещанное сладкое.

Да, пока еще рано говорить с твердой уверенностью. Да, все это еще весьма вилами по воде писано, и совсем не обязательно обязано быть. Да, впереди еще долгая–предолгая дорога расчетов, ошибок и экспериментов, но.

Самая вкуснота в том, что инфляционная теория Алана Гута, а точнее как раз математические выкладки Андрея Линде подразумевают совершенно замечательную и крышесносящую штуку.

Дополнения Линде официально называются "хаотическая теория инфляции" . Центральная ее часть, сама эссенция теории говорит о том, что данные "разряды скалярного поля" просто обязаны хаотически , т.е. случайно, происходить везде и всюду в изначальной протоВселенной. А это значит, что наш конкретный Большой Взрыв (который, как мы уже знаем из текущего поста, был совсем не взрыв), приведший к образованию нашей конкретной Вселенной - лишь один разряд, отдельный конкретный пузырь образовавшегося пространства, что мы зовем нашим космосом. А вокруг не просто "может быть", а по формулам прямо–таки "обязательно" должны плавать миллиарды и миллиарды других пузырей, других вселенных. В каждой из этих вселенных (уже с маленькой буквы) скалярное поле падало/разряжалось чуточку иначе, а следовательно законы физики в этих вселенных могут существенно отличаться от наших. Звезды и галактики там могли и вовсе не образоваться, или наоборот, там могло образоваться такое, что нам и не снилось в самых диких фантазиях.

Весь этот конгломерат раздувающихся пузырей–вселенных принято называть мультивселенная , хотя сам Линде предпочитает говорить по–русски "Многоликая Вселенная". Получается, что современное научное понимание происхождения и устройства нашего мира сейчас таково:

Существует бесконечная или как минимум очень большая мультивселенная, заполненная неким скалярным полем. Как долго она существует, откуда сама появилась, каковы условия в этой мультивселенной - мы понятия не имеем. Даже на полшишечки. Но ученые довольно сильно уверены, что в некоторых местах этой мультивселенной скалярное поле начинает падать, надувая пузыри обычных вселенных и образовывая в них привычное нам пространство–время. Наш конкретный пузырь начал надуваться около 13.8 миллиардов лет назад, и скалярное поле в нашей Вселенной, кстати, никуда не делось, теперь оно находится почти в минимуме, но не равно нулю! То, что расталкивает галактики нашей Вселенной в стороны, и что мы называем Темной Энергией, это и есть то самое "скалярное поле", точнее сказать, лишь часть его. Тут между прочим должно быть несколько абзацев объясняющих, что давно искомое поле Хиггса, образованное вроде бы недавно найденным бозоном Хиггса, тоже является порождением скалярного поля, а именно его внуком, потому что между скалярным и хиггсовым есть, вернее должно бы быть , еще некое суперХиггсово поле, в которое вырождается скалярное и которое в свою очередь вырождается в хиггсово. Но это не совсем доказано, и уже совсем в сторону от нашего текущего разговора, так что, пожалуй, хватит об этом.

Вокруг пузыря нашей Вселенной находятся пузыри других вселенных, которые образуются от падения скалярного поля в тех конкретных местах. Где–то их собственный местечковый большой взрыв (тоже с маленькой буквы) только–только начинается, а где–то все уже давно закончилось, а "между" этими вселенными находится просто скалярное поле в своем высоком энергетическом состоянии. Мультивселенная становится похожа на швейцарский сыр, где сам сыр это скалярное поле, а дырки в нем - мириады и мириады вселенных, одна из которых наша.

Можно ли пробурить тоннели сквозь это скалярное поле, чтобы попасть в другие "параллельные" вселенные? Неизвестно.
Как далеко от нашего пузыря до соседнего, и можно ли пробраться туда через высшие измерения? Неизвестно.
Существуют ли они вообще в действительности эти другие вселенные вокруг нашей или все это лишь фантазии? Неизвестно, но теперь в науке этому есть очень сильная уверенность.

Разве не замечательно?

UPD: Продолжение поста читайте в статье .

Помимо вопроса о происхождении Вселенной, современные космологи сталкиваются с рядом других проблем. Чтобы стандартная могла предсказать то распределение материи, которое мы наблюдаем, ее исходное состояние должно характеризоваться очень высокой степенью организованности. Сразу же возникает вопрос: каким образом такая структура могла образоваться?

Физик Алан Гут из Массачусетского технологического института предложил свою версию , которая объясняет спонтанное возникновение этой организации, устраняя необходимость искусственно вводить точные параметры в уравнения, описывающие исходное состояние Вселенной. Его модель была названа «инфляционной Вселенной». Суть ее в том, что внутри быстро расширяющейся, пере гретой Вселенной небольшой участок пространства охлаждается и начинает расширяться сильнее, подобно тому, как переохлажденная вода стремительно замерзает, расширяясь при этом. Эта фаза быстрого расширения позволяет устранить некоторые проблемы, присущие стандартным теориям большого взрыва.

Однако модель Гута тоже не лишена недостатков. Чтобы уравнения Гута правильно описывали инфляционную Вселенную, ему пришлось очень точно задавать исходные параметры для своих уравнений. Таким образом, он столкнулся с той же проблемой, что и создатели других теорий. Он надеялся избавиться от необходимости задавать точные параметры условий большого взрыва, но для этого ему пришлось вводить собственную параметризацию, оставшуюся необъясненной. Гут и его соавтор П. Штайнгарт признают, что в их модели «расчеты приводят к приемлемым предсказаниям только в том случае, если заданные исходные параметры уравнений варьируют в очень узком диапазоне. Большинство теоретиков (включая и нас самих) считают подобные исходные условия маловероятными». Далее авторы говорят о своих надеждах на то, что когда-нибудь будут разработаны новые математические теории, которые позволят им сделать свою модель более правдоподобной.

Эта зависимость от еще не открытых теорий — другой недостаток модели Гута. Теория единого поля, на которой основывается модель инфляционной Вселенной, полностью гипотетична и «плохо поддается экспериментальной проверке, так как большую часть ее предсказаний невозможно количественно проверить в лабораторных условиях». (Теория единого поля — это достаточно сомнительная попытка ученых связать воедино некоторые основные силы Вселенной.)

Другой недостаток теории Гута — это то, что в ней ничего не говорится о происхождении перегретой и расширяющейся материи. Гут проверил совместимость своей инфляционной теории с тремя гипотезами происхождения Вселенной. Сначала он рассмотрел стандартную теорию большого взрыва. В этом случае, по мнению Гута, инфляционный эпизод должен был произойти на одной из ранних стадий эволюции Вселенной. Однако эта модель ставит перед нами неразрешимую проблему сингулярности. Вторая гипотеза постулирует, что Вселенная возникла из хаоса. Некоторые ее участки были горячими, другие — холодными, одни расширялись, а другие сжимались. В этом случае инфляция должна была начаться в перегретой и расширяющейся области Вселенной. Правда, Гут признает, что эта модель не может объяснить происхождение первичного хаоса.

Третья возможность, которой Гут отдает предпочтение, заключается в том, что перегретый расширяющийся сгусток материи возникает квантово-механическим путем из пустоты. В статье, появившейся в журнале «Сайентифик Америкэн» в 1984 году, Гут и Штайнгарт утверждают: «Инфляционная модель Вселенной дает нам представление о возможном механизме, при помощи которого наблюдаемая Вселенная могла появиться из бесконечно малого участка пространства. Зная это, трудно удержаться от соблазна сделать еще один шаг и прийти к выводу, что Вселенная возникла буквально из ничего».

Однако какой бы привлекательной ни была эта идея для ученых, готовых ополчиться на любое упоминание о возможности существования высшего сознания, создавшего Вселенную, при внимательном рассмотрении она не выдерживает критики. «Ничто», о котором говорит Гут, — это гипотетический квантово-механический вакуум, описываемый еще не разработанной теорией единого поля, которая должна объединить уравнения квантовой механики и общей теории относительности. Другими словами, в данный момент этот вакуум невозможно описать даже теоретически.

Надо отметить, что физики описали более простой тип квантово-механического вакуума, который представляет собой море так называемых «виртуальных частиц», фрагментов атомов, которые «почти существуют». Время от времени некоторые из этих субатомных частиц переходят из вакуума в мир материальной реальности. Это явление получило название вакуумных флуктуаций. Вакуумные флуктуации невозможно наблюдать непосредственно, однако теории, постулирующие их существование, были подтверждены экспериментально. Согласно этим теориям, частицы и античастицы без всякой причины возникают из вакуума и практически сразу исчезают, аннигилируя друг друга. Гут и его коллеги допустили, что в какой-то момент вместо крошечной частицы из вакуума появилась целая Вселенная, и вместо того, чтобы сразу исчезнуть, эта Вселенная каким-то образом просуществовала миллиарды лет. Авторы этой модели решили проблему сингулярности, постулировав, что состояние, в котором Вселенная появляется из вакуума, несколько отличается от состояния сингулярности.

Однако у этого сценария есть два основных недостатка. Во-первых, можно только удивляться смелости фантазии ученых, распространивших достаточно ограниченный опыт с субатомными частицами на целую Вселенную. С. Хоукинг и Г. Эллис мудро предостерегают своих излишне увлекающихся коллег: «Предположение о том, что законы физики, открытые и изученные в лаборатории, будут справедливы в других точках пространственно-временного континуума, безусловно, очень смелая экстраполяция». Во-вторых, строго говоря, квантово-механический вакуум нельзя называть «ничто». Описание квантово-механического вакуума даже в самой простой из существующих теорий занимает множество страниц в высшей степени абстрактных математических выкладок. Такая система, несомненно, представляет собой «нечто», и сразу же встает все тот же упрямый вопрос: «Как возник столь сложно организованный «вакуум»?»

Вернемся к изначальной проблеме, для решения которой Гут создал инфляционную модель: проблеме точной параметризации исходного состояния Вселенной. Без такой параметризации невозможно получить наблюдаемое распределение материи во Вселенной. Как мы убедились, решить эту проблему Гуту не удалось. Более того, сомнительной представляется сама возможность того, что какая-нибудь версия теории большого взрыва, включая версию Гута, может предсказать наблюдаемое распределение материи во Вселенной.

Высокоорганизованное исходное состояние в модели Гута, по его же словам, в конце концов, превращается во «Вселенную» диаметром 10 сантиметров, наполненную однородным сверхплотным, перегретым газом. Она будет расширяться и остывать, но нет никаких оснований предполагать, что она когда-нибудь превратится в нечто большее, чем однородное облако газа. По сути дела, к этому результату приводят все теории большого взрыва. Если Гуту пришлось пускаться на многие ухищрения и делать сомнительные допущения, чтобы в конце концов получить Вселенную в виде облака однородного газа, то можно представить себе, каким должен быть математический аппарат теории, приводящей ко Вселенной в том виде, в каком мы ее знаем!

Хорошая научная теория дает возможность предсказывать многие сложные природные явления, исходя из простой теоретической схемы. Но в теории Гута (и любой другой версии ) все наоборот: в результате сложных математических выкладок мы получаем расширяющийся пузырь однородного газа. Несмотря на это, научные журналы печатают восторженные статьи об инфляционной теории, сопровождающиеся многочисленными красочными иллюстрациями, которые должны создать у читателя впечатление, что Гут наконец достиг заветной цели — нашел объяснение происхождения Вселенной. Честнее было бы просто открыть постоянную рубрику в научных журналах, чтобы публиковать в ней теорию происхождения Вселенной, модную в этом месяце.

Трудно даже представить себе всю сложность исходного состояния и условий, необходимых для возникновения нашей Вселенной со всем многообразием ее структур и организмов. В случае нашей Вселенной степень этой сложности такова, что ее едва ли можно объяснить с помощью одних физических законов.

С середины 1970-х годов физики начали работать над теоретическими моделями Великого объединения трех фундаментальных взаимодействий - сильного, слабого и электромагнитного. Многие из этих моделей приводили к заключению, что вскоре после Большого взрыва должны были в изобилии рождаться очень массивные частицы, несущие одиночный магнитный заряд. Когда возраст Вселенной достиг 10 -36 секунды (по некоторым оценкам, даже несколько раньше), сильное взаимодействие отделилось от электрослабого и обрело самостоятельность. При этом в вакууме образовались точечные топологические дефекты с массой в 10 15 - 10 16 большей, чем масса тогда еще не существовавшего протона. Когда, в свою очередь, электрослабое взаимодействие разделилось на слабое и электромагнитное и появился настоящий электромагнетизм, эти дефекты обрели магнитные заряды и начали новую жизнь - в виде магнитных монополей.


Разделение фундаментальных взаимодействий в нашей ранней Вселенной носило характер фазового перехода. При очень высоких температурах фундаментальные взаимодействия были объединены, но при остывании ниже критической температуры разделения не произошло [это можно сравнить с переохлаждением воды]. В этот момент энергия скалярного поля, связанного с объединением, превысила температуру Вселенной, что наделило поле отрицательным давлением и послужило причиной космологической инфляции. Вселенная стала очень быстро расширяться, и в момент нарушения симметрии (при температуре около 10 28 К) ее размеры увеличились в 10 50 раз. Скалярное поле, связанное с объединением взаимодействий, исчезло, а его энергия трансформировалась в дальнейшее расширение Вселенной.

ГОРЯЧЕЕ РОЖДЕНИЕ



Эта красивая модель поставила космологию перед малоприятной проблемой. «Северные» магнитные монополи аннигилируют при столкновении с «южными», но в остальном эти частицы стабильны. Из-за огромной по меркам микромира массы нанограммового масштаба вскоре после рождения они были обязаны замедлиться до нерелятивистских скоростей, рассеяться по пространству и сохраниться до наших времен. Согласно стандартной модели Большого взрыва, их нынешняя плотность должна приблизительно совпадать с плотностью протонов. Но в этом случае общая плотность космической энергии как минимум в квадриллион раз превышала бы реальную.
Все попытки обнаружить монополи до сих пор завершались неудачей. Как показал поиск монополей в железных рудах и морской воде, отношение их числа к числу протонов не превышает 10 -30 . Либо этих частиц вообще нет в нашей области пространства, либо столь мало, что приборы неспособны их зарегистрировать, несмотря на четкую магнитную подпись. Это подтверждают и астрономические наблюдения: наличие монополей должно сказываться на магнитных полях нашей Галактики, а этого не обнаружено.
Конечно, можно допустить, что монополей вообще никогда не было. Некоторые модели объединения фундаментальных взаимодействий и в самом деле не предписывают их появления. Но проблемы горизонта и плоской Вселенной остаются. Так получилось, что в конце 1970-х космология столкнулась с серьезными препятствиями, для преодоления которых явно требовались новые идеи.

ОТРИЦАТЕЛЬНОЕ ДАВЛЕНИЕ


И эти идеи не замедлили появиться. Главной из них была гипотеза, согласно которой в космическом пространстве помимо вещества и излучения существует скалярное поле (или поля), создающее отрицательное давление. Такая ситуация выглядит парадоксальной, однако же она встречается в повседневной жизни. Система с положительным давлением, например сжатый газ, при расширении теряет энергию и охлаждается. Эластичная лента, напротив, пребывает в состоянии с отрицательным давлением, ведь, в отличие от газа, она стремится не расшириться, а сжаться. Если такую ленту быстро растянуть, она нагреется и ее тепловая энергия возрастет. При расширении Вселенной поле с отрицательным давлением копит энергию, которая, высвобождаясь, способна породить частицы и кванты света.

ПЛОСКАЯ ПРОБЛЕМА

АСТРОНОМЫ УЖЕ ДАВНО УВЕРИЛИСЬ В ТОМ, ЧТО ЕСЛИ НЫНЕШНЕЕ КОСМИЧЕСКОЕ ПРОСТРАНСТВО И ДЕФОРМИРОВАНО, ТО ДОВОЛЬНО УМЕРЕННО.
Модели Фридмана и Леметра позволяют вычислить, какой была искривленность пространства вскоре после Большого взрыва. Кривизна оценивается с помощью безразмерного параметра Ω, равного отношению средней плотности космической энергии к тому ее значению, при котором эта кривизна делается равна нулю, а геометрия Вселенной, соответственно, становится плоской. Лет 40 назад уже не было сомнений, что если этот параметр и отличается от единицы, то не больше, чем в десять раз в ту или иную сторону. Отсюда следует, что через одну секунду после Большого взрыва он отличался от единицы в большую или меньшую сторону всего лишь на 10 -14 ! Случайна такая фантастически точная «настройка» или обусловлена физическими причинами? Именно так в 1979 году сформулировали задачу американские физики Роберт Дике и Джеймс Пиблз.

ПЛОСКАЯ ПРОБЛЕМА


Отрицательное давление может иметь различную величину. Но существует особый случай, когда оно равно плотности космической энергии с обратным знаком. При таком раскладе эта плотность остается постоянной при расширении пространства, поскольку отрицательное давление компенсирует растущее «разрежение» частиц и световых квантов. Из уравнений Фридмана-Леметра следует, что Вселенная в этом случае расширяется экспоненциально.

Гипотеза экспоненциального расширения позволяет разрешить все три проблемы, приведенные выше. Предположим, что Вселенная возникла из крошечного «пузырька» сильно искривленного пространства, который претерпел превращение, наделившее пространство отрицательным давлением и тем заставившее его расширяться по экспоненциальному закону. Естественно, что после исчезновения этого давления Вселенная возвратится к прежнему «нормальному» расширению.

РЕШЕНИЕ ПРОБЛЕМ


Будем считать, что радиус Вселенной перед выходом на экспоненту всего на несколько порядков превышал планковскую длину, 10 -35 м. Если в экспоненциальной фазе он вырастет, скажем, в 10 50 раз, то к ее концу достигнет тысяч световых лет. Каким бы ни было отличие параметра кривизны пространства от единицы до начала расширения, к его концу оно уменьшится в 10 -100 раз, то есть пространство станет идеально плоским!
Аналогично решается проблема монополей. Если топологические дефекты, ставшие их предшественниками, возникли до или даже в процессе экспоненциального расширения, то к его концу они должны отдалиться друг от друга на исполинские расстояния, С тех пор Вселенная еще изрядно расширилась, и плотность монополей упала практически до нуля. Вычисления показывают, что даже если исследовать космический кубик с ребром а миллиард световых лет, то там с высочайшей степенью вероятности не найдется ни единого монополя.
Гипотеза экспоненциального расширения подсказывает и простое избавление от проблемы горизонта. Предположим, что размер зародышевого «пузырька», положивше- го начало нашей Вселенной, не превышал пути, который успел пройти свет после Большого взрыва. В этом случае в нем могло установиться тепловое равновесие, обеспечившее равенство температур по всему объему, которое сохранилось при экспоненциальном расширении. Подобное объяснение присутствует во многих учебниках космологии, однако можно обойтись и без него.

ИЗ ОДНОГО ПУЗЫРЯ


На рубеже 1970-1980-х несколько теоретиков, первым из которых стал советский физик Алексей Старобинский, рассмотрели модели ранней эволюции Вселенной с короткой стадией экспоненциального расширения. В 1981 году американец Алан Гут опубликовал работу, привлекшую к этой идее всеобщее внимание. Он первым понял, что подобное расширение (скорее всего, завершившееся на возрастной отметке в 10 -34 с) снимает проблему монополей, которыми он поначалу и занимался, и указывает путь к разрешению неувязок с плоской геометрией и горизонтом. Гут красиво назвал такое расширение космологической инфляцией, и этот термин стал общепринятым.

ТАМ, ЗА ГОРИЗОНТОМ

ПРОБЛЕМА ГОРИЗОНТА СВЯЗАНА С РЕЛИКТОВЫМ ИЗЛУЧЕНИЕМ, ИЗ КАКОЙ БЫ ТОЧКИ ГОРИЗОНТА ОНО НИ ПРИШЛО, ЕГО ТЕМПЕРАТУРА ПОСТОЯННА С ТОЧНОСТЬЮ ДО 0,001%.
В 1970-х этих данных еще не было, но астрономы и тогда полагали, что колебаний не превышают 0,1%. В этом и состояла загадка. Кванты микроволнового излучения разлетелись по космосу приблизительно через 400 000 лет после Большого взрыва. Если Вселенная все время эволюционировала по Фрид-ману-Леметру, то фотоны, пришедшие на Землю с участков небесной сферы, разделенных угловым расстоянием более двух градусов, были испущены из областей пространства, которые тогда не могли иметь друг с другом ничего общего. Между ними лежали расстояния, которые свет попросту не успел бы преодолеть за все время тогдашнего существования Вселенной - иначе говоря, их космологические горизонты не пересекались. Поэтому у них не было возможности установить друг с другом тепловое равновесие, которое почти точно уравняло бы их температуры. Но если эти области не были связаны в ранние моменты образования, как они оказались практически одинаково нагреты? Если это и совпадение, то слишком уж странное.

ПЛОСКАЯ ПРОБЛЕМА



Но модель Гута все же имела серьезный недостаток. Она допускала возникновение множества инфляционных областей, претерпевающих столкновения друг с другом. Это вело к формированию сильно неупорядоченного космоса с неоднородной плотностью вещества и излучения, который совершенно не похож на реальное космическое пространство. Однако вскоре Андрей Линде из Физического института Академии наук (ФИАН), а чуть позже Андреас Альбрехт с Полом Стейнхардтом из Университета Пенсильвании показали, что если изменить уравнение скалярного поля, то все становится на свои места. Отсюда следовал сценарий, по которому вся наша наблюдаемая Вселенная возникла из одного вакуумного пузыря, отделенного от других инфляционных областей непредставимо большими расстояниями.

ХАОТИЧЕСКАЯ ИНФЛЯЦИЯ


В 1983 году Андрей Линде совершил очередной прорыв, разработав теорию хаотической инфляции, которая позволила объяснить и состав Вселенной, и однородность реликтового излучения. Во время инфляции любые предшествующие неоднородности скалярного поля растягиваются настолько, что практически исчезают. На завершающем этапе инфляции это поле начинает быстро осциллировать вблизи минимума своей потенциальной энергии. При этом в изобилии рождаются частицы и фотоны, которые интенсивно взаимодействуют друг с другом и достигают равновесной температуры. Так что по окончании инфляции мы имеем плоскую горячую Вселенную, которая затем расширяется уже по сценарию Большого взрыва. Этот механизм объясняет, почему сегодня мы наблюдаем реликтовое излучение с мизерными колебаниями температуры, которые можно приписать квантовым флуктуациям в первой фазе существования Вселенной. Таким образом, теория хаотической инфляции разрешила проблему горизонта и без допущения, что до начала экспоненциального расширения зародышевая Вселенная пребывала в состоянии теплового равновесия.

Согласно модели Линде, распределение вещества и излучения в пространстве после инфляции просто обязано быть почти идеально однородным, за исключением следов первичных квантовых флуктуаций. Эти флуктуации породили локальные колебания плотности, которые со временем дали начало галактическим скоплениям и разделяющим их космическим пустотам. Очень важно, что без инфляционного "растяжения" флуктуации оказались бы слишком слабыми и не смогли бы стать зародышами галактик. В общем, инфляционный механизм обладает чрезвычайно мощной и универсальной космологической креативностью - если угодно, предстает в качестве вселенского демиурга. Так что заглавие этой статьи - отнюдь не преувеличение.
В масштабах порядка сотых долей величины Вселенной (сейчас это сотни мегапарсек) ее состав был и остается однородным и изотропным. Однако на шкале всего космоса однородность исчезает. Инфляция прекращается в одной области и начинается в другой, и так до бесконечности. Это самовоспроизводящийся бесконечный процесс, порождающий ветвящееся множество миров - Мультивселенную. Одни и те же фундаментальные физические законы могут там реализоваться в различных ипостасях - к примеру, внутриядерные силы и заряд электрона в других вселенных могут оказаться отличными от наших. Эту фантастическую картину в настоящее время на полном серьезе обсуждают и физики, и космологи.

БОРЬБА ИДЕЙ


«Основные идеи инфляционного сценария были сформулированы три десятка лет назад, - объясняет один из авторов инфляционной космологии, профессор Стэнфордского университета Андрей Линде. - После этого главной задачей стала разработка реалистических теорий, основанных на этих идеях, но только критерии реалистичности не раз изменялись. В 1980-х доминировало мнение, что инфляцию удастся понять с помощью моделей Великого объединения. Потом надежды растаяли, и инфляцию стали интерпретировать в контексте теории супергравитации, а позднее - теории суперструн. Однако такой путь оказался очень нелегким. Во-первых, обе эти теории используют чрезвычайно сложную математику, а во-вторых, они так устроены, что реализовать с их помощью инфляционный сценарий весьма и весьма непросто. Поэтому прогресс здесь оказался довольно медленным. В 2000 году трое японских ученых с немалым трудом получили в рамках теории супергравитации модель хаотической инфляции, которую я придумал почти на 20 лет раньше. Спустя три года мы в Стэнфорде сделали работу, которая показала принципиальную возможность конструирования инфляционных моделей с помощью теории суперструн и объясняла на ее основе четырехмерность нашего мира. Конкретно, мы выяснили, что так можно получить вакуумное состояние с положительной космологической постоянной, которое необходимо для запуска инфляции. Наш подход с успехом развили другие ученые, и это весьма способствовало прогрессу космологии. Сейчас понятно, что теория суперструн допускает существование гигантского количества вакуумных состояний, дающих начало экспоненциальному расширению Вселенной.
Теперь следует сделать еще один шаг и понять устройство нашей Вселенной. Эти работы ведутся, но встречают огромные технические трудности, и что получится в результате, пока не ясно. Мои коллеги и я последние два года занимаемся семейством гибридных моделей, которые опираются и на суперструны, и на супергравитацию. Прогресс есть, мы уже способны описать многие реально существующие вещи. Например, мы близки к пониманию того, почему сейчас столь невелика плотность энергии вакуума, которая всего втрое превышает плотность частиц и излучения. Но необходимо двигаться дальше. Мы с нетерпением ожидаем результатов наблюдений космической обсерватории Planck, которая измеряет спектральные характеристики реликтового излучения с очень высоким разрешением. Не исключено, что показания ее приборов пустят под нож целые классы инфляционных моделей и дадут стимул к развитию альтернативных теорий».
Инфляционная космология может похвастаться немалым числом замечательных достижений. Она предсказала плоскую геометрию нашей Вселенной задолго до того, как этот факт подтвердили астрономы и астрофизики. Вплоть до конца 1990-х считалось, что при полном учете всего вещества Вселенной численная величина параметра Ω не превышает 1/3. Понадобилось открыть темную энергию, чтобы удостовериться, что эта величина практически равна единице, как и следует из инфляционного сценария. Были предсказаны колебания температуры реликтового излучения и заранее вычислен их спектр. Подобных примеров немало. Попытки опровергнуть инфляционную теорию предпринимались неоднократно, но это никому не удалось. Кроме того, как считает Андрей Линде, в последние годы сложилась концепция множественности вселенных, формирование которой вполне можно назвать научной революцией: «Несмотря на свою незавершенность, она становится частью культуры нового поколения физиков и космологов».

НАРАВНЕ С ЭВОЛЮЦИЕЙ

«Инфляционная парадигма реализована сейчас во множестве вариантов, среди которых нет признанного лидера, - говорит директор Института космологии при университете Тафтса Александр Виленкин. - Моделей много, но никто не знает, которая из них правильная. Поэтому говорить о каком-то драматическом прогрессе, достигнутом в последние годы, я бы не стал. Да и сложностей пока хватает. Например, не совсем понятно, как сравнивать вероятности событий, предсказанных той или иной моделью. В вечной вселенной любое событие должно происходить бесчисленное множество раз. Так что для вычисления вероятностей надо сравнивать бесконечности, а это очень непросто. Также существует нерешенная проблема начала инфляции. Скорее всего, без него не обойтись, но еще не понятно, как к нему подобраться. И все же у инфляционной картины мира нет серьезных конкурентов. Я бы сравнил ее с теорией Дарвина, которая поначалу тоже имела множество неувязок. Однако альтернативы у нее так и не появилось, и в конце концов она завоевала признание ученых. Мне кажется, что и концепция космологической инфляции прекрасно справится со всеми трудностями».